Нетрадиционные и возобновляемые источники энергии

Динамика потребления энергоресурсов, политика России в области нетрадиционных и возобновляемых источников энергии. Использование геотермальной энергии для выработки тепловой и электрической энергии. Мощность приливных течений и приливного подъема воды.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 06.10.2017
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Традиционные и нетрадиционные источники энергии

2. Запасы и динамика потребления энергоресурсов, политика России в области нетрадиционных и возобновляемых источников энергии

3. Энергия ветра и возможности ее использования

3.1 Происхождение ветра, ветровые зоны России

3.2 Классификация ветродвигателей по принципу работы

4. Источники геотермального тепла. Тепловой режим земной коры

4.1 Тепловой режим земной коры

4.2 Подземные термальные воды (гидротермы)

4.3 Запасы и распространение термальных вод

4.4 Состояние геотермальной энергетики в России

4.5 Использование геотермальной энергии для выработки тепловой и электрической энергии

4.5.1 Прямое использование геотермальной энергии

4.5.2 Геотермальные электростанции с бинарным циклом

4.5.3 Схема Паужетской ГеоТЭС

5. Использование биотоплива для энергетических целей

5.1 Производство биомассы для энергетических целей

5.2 Пиролиз

5.3 Термохимические процессы

5.4 Спиртовая ферментация (брожение)

5.4.1 Методы получения спирта

5.4.2 Использование этанола в качестве топлива

6. Системы солнечного теплоснабжения

6.1 Классификация и основные элементы гелиосистем

6.2 Концентрирующие гелиоприемники

6.3 Солнечные коллекторы

6.4 Солнечные абсорберы

7. Энергетические ресурсы океана. Преобразователи энергии волн

7.1 Преобразователи, отслеживающие профиль волны

7.2 Преобразователи, использующие энергию колеблющегося водяного столба

7.3 Подводные устройства

8. Использование энергии приливов и морских течений

8.1 Общие сведения об использовании энергии приливов

8.2 Мощность приливных течений и приливного подъема воды

8.3 Использование энергии океанских течений

8.4 Общая характеристика технических решений

9. Преобразование тепловой энергии океана

9.1 Ресурсы тепловой энергии океана

9.2 Схема ОТЭС, работающей по замкнутому циклу

9.3 Схема ОТЭС, работающей по открытому циклу

9.4 Использование перепада температур океан-атмосфера

9.5 Прямое преобразование тепловой энергии

Заключение

Библиографический список

Введение

Увеличивающееся загрязнение окружающей среды, нарушение теплового баланса атмосферы постепенно приводят к глобальным изменением климата. Дефицит энергии и ограниченность топливных ресурсов с всё нарастающей остротой показывают неизбежность перехода к нетрадиционным, альтернативным источникам энергии. Они экологичны, возобновляемы, основой их служит энергия Солнца и Земли.

Основные причины, указывающие на важность скорейшего перехода к АИЭ.

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

1. Традиционные и нетрадиционные источники энергии

При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органических топлив (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов. Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично. Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии - нетрадиционных и возобновляемых.

Возобновляемые источники энергии - это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенамправленной деятельности человека, и это является ее отличительным признаком.

Невозобновляемые источники энергии - это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников в отличие от возобновляемых находится в природе в связанном состоянии и высвобождается в результате целенаправленных действий человека.

В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН (1978 г.) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков. Классификация НВИЭ представлена в таблице 1.

Таблица 1. Нетрадиционные и возобновляемые источники энергии

Источники первичной энергии

Естественное преобразование энергии

Техническое преобразование энергии

Вторичная потребляемая энергия

Земля

Геотермальное тепло Земли

Геотермальная электростанция

Электричество

Солнце

Испарение атмосферных осадков

Гидроэлектростанции (напорные и свободнопоточные)

Движение атмосферного воздуха

Ветроэнергетические установки

Морские течения

Морские электростанции

Движение волн

Волновые электростанции

Таяние льдов

Ледниковые электростанции

Фотосинтез

Электростанции на биомассе

Фотоэлектричество

Планеты

Приливы и отливы

Приливные электростанции

Начиная с 90-х годов по инициативе ЮНЕСКО при поддержке государств-членов ООН и заинтересованных организаций, проводятся мероприятия по продвижению идеи широкого использования возобновляемых источников.

2. Запасы и динамика потребления энергоресурсов, политика России в области нетрадиционных и возобновляемых источников энергии

Потенциальные возможности нетрадиционных и возобновляемых источников энергии составляют, млрд. т.у.т (тонн условного топлива) в год:

- энергии Солнца - 2300;

- энергии ветра - 26,7;

- энергии биомассы - 10;

- тепла Земли - 40000;

- энергии малых рек - 360;

- энергии морей и океанов - 30;

- энергии вторичных низкопотенциальных источников тепла - 530.

Разведанные запасы местных месторождений угля, нефти и газа в России составляют 8,7 млрд. т.у.т., торфа - 10 млрд. т.у.т. По имеющимся оценкам, технический потенциал ВИЭ в России составляет порядка 4,6 млрд. т у.т. в год, что превышает современный уровень энергопотребления России, составляющий около 1,2 млрд. т.у.т. в год. Экономический потенциал НВИЭ определен в 270 млн. т у.т. в год, что составляет около 25% от годового внутрироссийского потребления. В настоящее время экономический потенциал ВИЭ существенно увеличился в связи с подорожанием традиционного топлива и удешевлением оборудования возобновляемой энергетики за прошедшие годы.

Доля возобновляемой энергетики в производстве электроэнергии составила в 2002 г. около 0,5% от общего производства или 4,2 млрд. кВт·ч, а объем замещения органического топлива - около 1% от общего потребления первичной энергии или около 10 млн. т.у.т. в год.

Положительным фактором для развития НВИЭ в России является начавшееся создание законодательной базы. Так, Законом «Об энергосбережении» в 1996 г. установлена правовая основа применения электрогенерирующих установок на НВИЭ, состоящая в праве независимых производителей этой электроэнергии на подсоединение к сетям энергоснабжающих организаций. Государственной Думой и Советом Федерации принят Закон «О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии». Этот правовой акт устанавливает минимально допустимые в современных условиях экономические и организационные основы развития. Ведется разработка федеральной программы по использованию НВИЭ. Предполагается развивать производственные мощности оборудования нетрадиционной энергетики, на что будет выделено 1,315 млрд. рублей: 17% из федерального бюджета, остальные - из региональных и местных бюджетов.

В мае 2003 г. на рассмотрение правительства России вынесена «Энергетическая стратегия России на период до 2020 г.». Одним из направлений данного документа является рассмотрение возможностей использования возобновляемых источников энергии.

Стратегическими целями использования возобновляемых источников энергии и местных видов топлива являются:

- сокращение потребления невозобновляемых топливно-энергетических ресурсов;

- снижение экологической нагрузки от топливно-энергетического комплекса;

- обеспечение децентрализованных потребителей и регионов с дальним и сезонным завозом топлива;

- снижение расходов на дальнепривозное топливо.

Необходимость развития возобновляемой энергетики определяется ее ролью в решении следующих проблем:

- обеспечение устойчивого тепло- и электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях. Объем завоза топлива в эти районы составляет около 7 млн. т нефтепродуктов и свыше 23 млн. т угля;

- обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущербов от аварийных и ограничительных отключений;

- снижение вредных выбросов от энергетических установок в городах и населенных пунктах со сложной экологической обстановкой, а также в местах массового отдыха населения.

В последнее время растет интерес к нетрадиционной энергетике у региональных АО-энерго и местных администраций. Оценки показывают, что к 2010 г. может быть осуществлен ввод в действие около 1000 МВт электрических и 1200 МВт тепловых мощностей на базе возобновляемых источников энергии при соответствующей государственной поддержке.

3. Энергия ветра и возможности ее использования

3.1 Происхождение ветра, ветровые зоны России

Основной причиной возникновения ветра является неравномерное нагревание солнцем земной поверхности. Земная поверхность неоднородна: суша, океаны, горы, леса обусловливают различное нагревание поверхности под одной и той же широтой. Вращение Земли также вызывает отклонения воздушных течений. Все эти причины осложняют общую циркуляцию атмосферы. Возникает ряд отдельных циркуляции, в той или иной степени связанных друг с другом.

Различные зоны страны имеют ветровые режимы, сильно отличающиеся один от другого. Значение среднегодовой скорости ветра в данном районе дает возможность приближенно судить о целесообразности использования ветродвигателя и об эффективности агрегата. Карта ветроэнергетических ресурсов России представлена на рисунке 3.1.

Прибрежные зоны северной части страны, Каспийское побережье и северная часть Сахалина отличаются, как это видно на карте, высокой интенсивностью ветрового режима. Здесь среднегодовые скорости ветра превышают 6 м/сек. В этих районах часто наблюдаются ураганные ветры (выше 30 м/сек), которые сопровождаются снежными метелями и буранами. Поэтому в указанной зоне можно использовать только агрегаты с ветродвигателями высокой быстроходности (двух-трехлопастные), прочность которых рассчитана на ветровые нагрузки при скоростях ветра 40 м/сек. В Арктике и на побережье наиболее эффективно применение ветроэлектрических станций, работающих совместно с тепловым резервом, а также небольших ветроэлектрических агрегатов.

Рисунок 3.1. Карта ветроэнергетических ресурсов России. Цифрами обозначены зоны со среднегодовыми скоростями ветра: 1 - выше 6 м/сек; 2 - от 3,5 до 6 м/сек; 3 - до 3,5 м/сек.

Большинство областей европейской части России относятся к зоне средней интенсивности ветра. В этих районах среднегодовая скорость ветра составляет от 3,5 до 6 м/сек. К этой же зоне относится часть территории, лежащая юго-восточнее озера Байкал.

Третья зона занимает обширную территорию Восточной Сибири и Дальнего Востока, некоторых областей европейской части России. В этой зоне скорости ветра относительно невелики - до 3,5 м/с, и широкое применение здесь ветроэнергетических установок не рекомендуется.

3.2 Классификация ветродвигателей по принципу работы

Существующие системы ветродвигателей по схеме устройства ветроколеса и его положению в потоке ветра разделяются на три класса.

Первый класс включает ветродвигатели, у которых ветровое колесо располагается в вертикальной плоскости; при этом плоскость вращения перпендикулярна направлению ветра, и, следовательно, ось ветроколеса параллельна потоку. Такие ветродвигатели называются крыльчатыми.

Быстроходностью называется отношение окружной скорости конца лопасти к скорости ветра:

(3.2)

Крыльчатые ветродвигатели, согласно ГОСТ 2656-44, в зависимости от типа ветроколеса и быстроходности, разделяются на три группы (рисунок 3.1).

- ветродвигатели многолопастные, тихоходные, с быстроходностью Zn?2.

- ветродвигатели малолопастные, тихоходные, в том числе ветряные мельницы, с быстроходностью Zn > 2.

- ветродвигатели малолопастные, быстроходные, Zn ? 3.

Ко второму классу относятся системы ветродвигателей с вертикальной осью вращения ветрового колеса. По конструктивной схеме они разбиваются на группы:

- карусельные, у которых нерабочие лопасти либо прикрываются ширмой, либо располагаются ребром против ветра;

- роторные ветродвигатели системы Савониуса.

К третьему классу относятся ветродвигатели, работающие по принципу водяного мельничного колеса и называемые барабанными. У этих ветродвигателей ось вращения горизонтальна и перпендикулярна направлению ветра.

Рисунок 3.2. Схемы ветроколес крыльчатых ветродвигателей: 1 - многолопастных; 2-4 - малолопастных

Основные недостатки карусельных и барабанных ветродвигателей вытекают из самого принципа расположения рабочих поверхностей ветроколеса в потоке ветра, а именно:

1 Так как рабочие лопасти колеса перемещаются в направлении воздушного потока, ветровая нагрузка действует не одновременно на все лопасти, а поочерёдно. В результате каждая лопасть испытывает прерывную нагрузку, коэффициент использования энергии ветра получается весьма низким и не превышает 10%, что установлено экспериментальными исследованиями.

2 Движение поверхностей ветроколеса в направлении ветра не позволяет развить большие обороты, так как поверхности не могут двигаться быстрее ветра.

3 Размеры используемой части воздушного потока (ометаемая поверхность) малы по сравнению с размерами самого колеса, что значительно увеличивает его вес, отнесённый к единице установленной мощности ветродвигателя.

У роторных ветродвигателей системы Савониуса наибольший коэффициент использования энергии ветра 18%. Крыльчатые ветродвигатели свободны от перечисленных выше недостатков карусельных и барабанных ветродвигателей. Хорошие аэродинамические качества крыльчатых ветродвигателей, конструктивная возможность изготовлять их на большую мощность, относительно лёгкий вес на единицу мощности - основные преимущества ветродвигателей этого класса.

Коммерческое применение крыльчатых ветродвигателей началось с 1980 года. За последние 14 лет мощность ветродвигателей увеличилась в 100 раз: от 20-60 кВт при диаметре ротора около 20 м в начале 1980 годов до 5000 кВт при диаметре ротора свыше 100 м к 2003 году. Некоторые прототипы ветродвигателей имеют еще большие мощность и диаметр ротора. За тот же период стоимость генерируемой ветряками энергии снизилась на 80 %.

4. Источники геотермального тепла. Тепловой режим земной коры

4.1 Тепловой режим земной коры

Под геотермикой (от греческих слов «гео» - земля и «термо» - тепло) понимается наука, изучающая тепловое состояние земной коры и Земли в целом, его зависимость от геологического строения, состава горных пород, магматических процессов и целого ряда других факторов.

Критерием теплового состояния земного шара является поверхностный градиент температуры, позволяющий судить о потерях тепла Земли. Экстраполируя градиент на большие глубины, можно в какой-то степени оценить температурное состояние земной коры. Величина, соответствующая углублению в метрах, при котором температура повышается на 1° С, называется геотермической ступенью.

В связи с изменением интенсивности солнечного излучения тепловой режим первых 1,5-40 м земной коры характеризуется суточными и годовыми колебаниями. Далее имеют место многолетние и вековые колебания температуры, которые с глубиной постепенно затухают. На любой глубине температура горных пород (T ) приближенно может быть определена по формуле

(4.1)

где в t - средняя температура воздуха данной местности; H - глубина, для которой определяется температура; h - глубина слоя постоянных годовых температур; у - геотермическая ступень.

Средняя величина геотермической ступени равна 33 м, и с углублением от зоны постоянной температуры на каждые 33 м температура повышается на 1 °С. Геотермические условия чрезвычайно разнообразны. Это связано с геологическим строением того или иного района Земли. Известны случаи, когда увеличение температуры на 1° С происходит при углублении на 2-3 м. Эти аномалии обычно находятся в областях современного вулканизма. На глубине 400-600 м в некоторых районах, например Камчатки, температура доходит до 150-200 °С и более. В настоящее время получены данные о довольно глубоком промерзании верхней зоны земной коры. Геотермические наблюдения в зоне вечной мерзлоты позволили установить, что мощность мерзлых горных пород достигает 1,5 тыс. м. Так, в районе реки Мархи (приток Вилюя) на глубине 1,8 тыс. м температура составляет всего лишь 3,6 °С. Здесь геотермическая ступень составляет 500 м на 1 °С. На отдельных платформенных частях территории (на Русской платформе) температура с глубиной примерно следующая: 500 м - не выше 20° С, 1 тыс. м - 25-35° С; 2 тыс. м - 40-60° С; 3-4 тыс. м - до 100° С и более.

4.2 Подземные термальные воды (гидротермы)

В земной коре существует подвижный и чрезвычайно теплоемкий энергоноситель - вода, играющая важную роль в тепловом балансе верхних геосфер. Вода насыщает все породы осадочного чехла. Она содержится в породах гранитной и осадочной оболочек, а вероятно, и в верхних частях мантии. Жидкая вода существует только до глубин 10-15 км, ниже при температуре около 700 °С вода находится исключительно в газообразном состоянии.

На глубине 50-60 км при давлениях около 3·104 атм исчезает граница фазовости, т.е. водяной газ приобретает такую же плотность, что и жидкая вода.

В любой точке земной поверхности, на определенной глубине, зависящей от геотермических особенностей района, залегают пласты горных пород, содержащие термальные воды (гидротермы). В связи с этим в земной коре следует выделять еще одну зону, условно называемую «гидротермальной оболочкой». Она прослеживается повсеместно по всему земному шару только на разной глубине. В районах современного вулканизма гидротермальная оболочка иногда выходит на поверхность. Здесь можно обнаружить не только горячие источники, кипящие грифоны и гейзеры, но и парогазовые струи с температурой 180-200° С и выше. Температура подземных вод колеблется в широких пределах, обусловливая их состояние, влияя на состав и свойства. В соответствии с температурой теплоносителя все геотермальные источники подразделяют на эпитермальные, мезотермальные и гипотермальные.

К эпитермальным источникам обычно относят источники горячей воды с температурой 50-90 °С, расположенные в верхних слоях осадочных пород, куда проникают почвенные воды. К мезотермальным источникам относят источники с температурой воды 100-200 °С. В гипотермальных источниках температура в верхних слоях превышает 200 °С и практически не зависит от почвенных вод. Происхождение термальных вод может быть связано с деятельностью тепловых очагов, но чаще всего вода, тем или иным способом попадая в пласт породы, совершает долгий путь, пока не приходит в контакт с тепловым потоком или постепенно разогревается, отбирая тепло у пород.

Жидкая фаза воды и тепло могут происходить из одного источника лишь в том случае, если таковым является остывающий магматический расплав. Перегретая вода в виде паровых струй выделяется из расплава вместе с газами и легколетучими компонентами, устремляясь в верхние, более холодные горизонты. Уже при температурах 425-375 °С пар может конденсироваться в жидкую воду; в ней растворяется большинство летучих компонентов - так появляется гидротермальный раствор «ювенильного» (первозданного) типа. Под термином «ювенильные» геологи подразумевают воды, которые никогда прежде не участвовали в водообороте; такие гидротермы в прямом смысле слова являются первичными, новообразованными. Полагают, что подобным образом сформировалась вся поверхностная гидросфера морей и океанов в эпоху молодой магматической активности планеты, когда только-только зарождались твердые консолидированные «острова» материковых платформ.

Прямой противоположностью «ювенильных» вод являются воды инфильтрационного происхождения. Если «ювенильные» воды, отделяясь от магматического расплава, поднимаются к поверхности, то преобладающее движение инфильтрационных вод - от поверхности вглубь. Источник вод этого типа представляет собой атмосферные осадки или вообще поверхностные водотоки. По поровому пространству пород или трещинным зонам эти воды проникают (инфильтруются) в более глубокие горизонты. По пути движения они насыщаются различными солями, растворяют подземные газы, нагреваются, отбирая тепло у водопроводящих пород. В зависимости от глубины проникновения инфильтрационных вод они становятся более или менее нагретыми. При средних геотермических условиях для того, чтобы инфильтрационные воды стали термальными (т.е. с температурой более 37 °С), необходимо их погружение на глубину 800-1000 м. Инфильтрационные гидротермы способны изливаться на поверхность в виде горячих источников, если существует возможность разгрузки воды на поверхность по разломам, выклиниваниям слоев, что происходит в более низких относительно области питания участках. Причем, чтобы вода оставалась термальной, подъем ее к поверхности должен происходить очень быстро, например, по широким трещинам разломов. При медленном подъеме гидротермы остывают, отдавая аккумулированное тепло вмещающим породам. Однако, если пробурить скважину на глубину 3-4 тыс. м и обеспечить быстрый подъем воды, можно получить термальный раствор с температурой до 100 °С. Все это касается областей со средними геотермическими показателями и не относится к вулканическим районам или зонам недавнего горнообразования.

Вулканический тип термальных вод следует выделить особо. Как уже говорилось, горячие источники вулканических районов нельзя целиком считать «ювенильными», т. е. магматическими. Опыт исследований показывает, что в подавляющем случае вода вулканических терм имеет поверхностное инфильтрационное происхождение. Помимо гейзеров вулканический тип гидротерм включает грязевые грифоны и котлы, паровые струи и газовые фумаролы.

Все перечисленные типы термальных вод имеют разнообразнейший химический и газовый состав. Их общая минерализация колеблется от ультрапресных категорий (менее 0,1 г/л) до категорий сверхкрепких рассолов

(более 600 г/л). Гидротермы содержат в растворенном состоянии различные газы: активные (агрессивные), такие, как углекислота, сероводород, атомарный водород, и малоактивные - азот, метан, водород.

В геотермальной энергетике могут быть использованы практически все виды термальных вод: перегретые воды - при добыче электроэнергии, пресные термальные воды - в коммунальном теплообеспечении, солоноватые воды - в бальнеологических целях, рассолы - как промышленное сырье.

4.3 Запасы и распространение термальных вод

К областям распространения месторождений термальных вод относятся: вулканическое кольцо бассейна Тихого океана, Альпийский складчатый пояс, рифтовые долины континентов, срединно-океанические хребты, платформенные погружения и предгорные краевые прогибы. По своему происхождению месторождения термальных вод можно подразделить на два типа, различающиеся способом переноса тепловой энергии. Первый тип образуют геотермальные системы конвекционного происхождения, отличающиеся высокой температурой вод, разгружающихся на дневную поверхность. Это районы расположения современных или недавно потухших вулканов, где на поверхность выходят не только горячие воды, но и пароводяная смесь с температурой до 200 °С и более. На сегодняшний день все геотермальные электростанции работают в районах современного вулканизма. К месторождениям конвекционного типа относятся также гидротермальные проявления так называемых рифтовых зон, характеризующихся активным тектоническим режимом и умеренно повышенными геотермическими градиентами - 45-70 °С/км. (Рифтовые зоны и связанные с ними термоаномалии, как правило, простираются на огромные расстояния. Например, Северо-Мексиканский бассейн термальных вод протянулся на 1,5 тыс. км, от северо-восточной части Мексики до Флориды. Одна из скважин здесь с глубины 5859 м дает пароводяную смесь с температурой 273 °С, причем этот флюид выходит при высоком давлении.)

Второй тип геотермальных месторождений образуется при преобладающем кондуктивном прогреве подземных вод, сосредоточенных в глубоких платформенных впадинах и предгорных прогибах. Они располагаются в невулканических районах и характеризуются нормальным геотермическим градиентом - 30-33 °С/км.

Бурением на нефть и газ, а частично и на воду обнаружены сотни подземных артезианских бассейнов термальных вод, занимающих площади в несколько миллионов квадратных километров. Как правило, артезианские бассейны, расположенные в равнинных областях и предгорных прогибах, содержат воду с температурой 100-150° С на глубине 3-4 км.

Можно без преувеличения сказать, что любой отмеченный на карте предгорный прогиб, который был сформирован в эпоху альпийского горообразования, содержит бассейн термальных вод. Таковы артезианские бассейны предгорных прогибов Пиренеев, Альп, Карпат, Крыма, Кавказа, Копет-Дага, Тянь-Шаня, Памира, Гималаев. Термальные воды этих бассейнов демонстрируют уникальное многообразие химических типов от пресных (питьевых) до рассольных, употребляющихся как минеральное сырье для извлечения ценных элементов. Больше половины всех известных минеральных (лечебных) вод выходят в виде источников или выводятся скважинами в пределах альпийских предгорных и межгорных прогибов. Опыт показывает, что термальные воды подобных малых бассейнов являются наиболее перспективными для комплексного использования в практических целях.

Подсчеты запасов термальных вод основываются на имеющихся данных об объемах гравитационных вод, заключенных в пластах, объемах самих водоносных горизонтов и коллекторских свойствах слагающих их горных пород. Запасы термальных вод представляют собой общее количество выявленных термальных вод, находящихся в порах и трещинах водоносных горизонтов, имеющих температуру 40-200° С, минерализацию до 35 г/л и глубину залегания до 3,5 тыс. м от дневной поверхности. С развитием глубокого бурения на 10-15 км открываются многообещающие перспективы вскрытия высокотемпературных источников тепла. На таких глубинах в некоторых районах страны (исключая вулканические) температура вод может достигнуть 350° С и выше. Районы выхода на поверхность кристаллического фундамента (Балтийский, Украинский, Анабарский щиты) и приподнятые горные сооружения (Урал, Кавказ, Карпаты и т. д.) совершенно не имеют запасов термальных вод. На участках погружения фундамента, т. е. при увеличении толщины осадочного чехла, в недрах наблюдается некоторое «потепление» до 35-40 °С на платформах и до 100-120 °С в глубоких предгорных впадинах.

К числу районов, имеющих максимально «теплые» земные недра, несомненно, относится Курило-Камчатская вулканическая зона. Здесь нагретость пород и содержащихся в них вод зависит не только от глубины их залегания, но в большей степени от близости к вулканическим центрам и разломам в земной коре.

Таким образом, температура пород, а следовательно, и вод находится в зависимости от глубины залегания и от района, который характеризуется большей или. меньшей геотермической активностью.

4.4 Состояние геотермальной энергетики в России

Верхне-Мутновская ГеоТЭС мощностью 12 Мвт (3х4 МВт) является опытно-промышленной очередью Мутновской ГеоТЭС проектной мощностью 200 МВт, создаваемой для электроснабжения Петропавловск-Камчатского промышленного района.

В настоящее время на площадке имеются три эксплуатационные скважины, суммарный дебит пара из которых превышает потребность трех устанавливаемых энергомодулей по 4 МВт с паровыми турбинами. Кроме того, эти энергомодули не полностью используют тепло отсепарированной термальной воды, закачиваемой в пласт с температурой 150°C. В проекте последующих очередей Мутновской ГеоТЭС также не предусматривается использование тепла термальной воды, поэтому с применением только паровых турбин общая мощность ГеоТЭС на Мутновском месторождении не превысит 200 МВт.

Предлагается в течение трех лет разработать и испытать на Верхне-Мутновской ГеоТЭС пилотный двухконтурный аммиачный энергомодуль мощностью 6 МВт, работающий на избыточном паре из существующих скважин и тепле сбросной геотермальной воды, которая будет дополнительно охлаждаться до 100°C.

Создание и испытания пилотного образца аммиачного энергомодуля позволит (наряду с наращиванием мощности Верхне-Мутновской станции до 18 МВт) на 40-50% увеличить мощность Мутновской ГеоТЭС при тех же объемах бурения путем совместного применения паровых и аммиачных энергоустановок. При этом себестоимость электроэнергии снижается на 20-30% за счет более эффективного использования геотермального тепла.

Комбинированные ГеоТЭС - будущее геотермальной энергетики Камчатки. Два крупнейших месторождения парогидротерм Камчатки - разрабатываемое Мутновское и перспективное Нижне-Кошелевское, способные на многие десятилетия полностью обеспечить энергетические потребности региона, расположены в горных местностях с неблагоприятным климатом. Среднегодовая температура отрицательная, глубина снега до 10 м. Это существенно затрудняет и удорожает строительство и эксплуатацию геотермальных электростанций. Как известно, поступающая из геотермальных скважин пароводяная смесь имеет сложный химсостав. Содержание солей в водяной фазе до 2 г/л, в том числе много кремнекислоты, в паре значительное количество неконденсирующихся газов, включая сероводород. Это ограничивает возможность глубокого использования теплового потенциала геотермального теплоносителя в традиционном цикле ГеоТЭС с конденсационными паровыми турбинами, не позволяя получать дополнительный пар расширением воды и глубокий вакуум в конденсаторе. Сильный ветер, мороз, обильные снегопады в сочетании с высокой влажностью созда-ют угрозу образования льда в обычно применяемых на ГеоТЭС влажных градирнях, что может привести к останову энергоблоков и даже к разрушению градирен.

На предлагаемых ГеоТЭС комбинированного цикла эти проблемы в значительной степени решаются. Если применить паровые турбины с близким к атмосферному противодавлением и направить отработанный пар в конденсатор, являющийся одновременно парогенератором нижнего контура станции с турбинами на низкокипящем незамерзающем рабочем теле, то суммарную выработку электроэнергии можно значительно повысить за счет снижения температуры отвода тепла из цикла. Конденсация пара низкокипящего рабочего тела осуществляется в воздушном конденсаторе, поэтому полезная мощность станции зимой значительно возрастает вместе с ростом потребности в электроэнергии. Кроме того, нет затрат пара на эжекторы для удаления неконденсирующихся газов, можно также частично использовать тепло геотермальной воды для перегрева пара низкокипящего рабочего тела.

Облегчается зимняя эксплуатация станции, так как нет открытого контакта воды с воздухом (станция "сухая") , а температура воды в теплообменных аппаратах и трубопроводах не опускается ниже 60 °С. Комбинированные ГеоТЭС уже работают за рубежом, но в районах с тропическим климатом, где их эффективность не может проявиться в полную силу из-за высоких температур воздуха. Для северных районов вышеуказанные преимущества таких станций обеспечивают большие перспективы их применения. В проходящем сейчас международном тендере на строительство первой очереди Мутновской ГеоТЭС станция комбинированного цикла рассматривается в качестве одного из возможных вариантов. Также в Росии постоены Океанская ГеоТЭС и Паужетская ГеоТЭС.

4.5 Использование геотермальной энергии для выработки тепловой и электрической энергии

4.5.1 Прямое использование геотермальной энергии

Геотермальные станции в вулканических районах базируются на месторождениях пароводяной смеси, добываемой из природных подземных

трещинных коллекторов с глубины 0,5-3 км. Пароводяная смесь в среднем имеет степень сухости 0,2-0,5 и энтальпию 1500-2500 кДж/кг. В среднем одна эксплуатационная скважина обеспечивает электрическую мощность 3-5 МВт, средняя стоимость бурения составляет 900 долларов за метр.

Геотермальная электростанция с непосредственным использованием природного пара. Самая простая и доступная геотермальная энергоустановка представляет собой паротурбинную установку с противодавлением. Природный пар из скважины подается прямо в турбину с последующим выходом в атмосферу или в устройство, улавливающее ценные химические вещества. В турбину с противодавлением можно подавать вторичный пар или пар, получаемый из сепаратора. По этой схеме электростанция работает без конденсаторов, и отпадает необходимость в компрессоре для удаления из конденсаторов неконденсирующихся газов. Эта установка наиболее простая, капитальные и эксплуатационные затраты на нее минимальны. Она занимает небольшую площадь, почти не требует вспомогательного оборудования и ее легко приспособить как переносную геотермальную электростанцию (рисунок 4.5.1).

Турбогенераторные установки с противодавлением не препятствуют промышленному использованию химических веществ, содержащихся в природном теплоносителе. Так, например, в природном паре некоторых месторождений Италии содержится 150-700 мг/кг борной кислоты, и при помощи подобных установок можно добывать этот ценный продукт одновременно с выработкой электроэнергии.

Рассмотренная схема может стать самой выгодной для тех районов, где имеются достаточные запасы природного пара. Рациональная эксплуатация обеспечивает возможность эффективной работы такой установки даже при переменном дебите скважин.

Рисунок 4.5.1. Схема геотермальной электростанции с непосредственным использованием природного пара: 1 - скважина; 2 - турбина; 3 - генератор; 4 - выход в атмосферу или на химический завод

В Италии работает несколько таких станций. Одна из них - мощностью 4 тыс. кВт при у дельном расходе пара около 20 кг/сек, или 80 т пара в час; другая - ощностью 16 тыс. кВт, где установлено четыре турбогенератора мощностью 4 тыс. кВт. Последняя снабжается паром от 7-8 скважин. В подобных схемах требуется значительное количество пара, который с большим успехом может быть использован в турбинах конденсационного типа.

Геотермальная электростанция с конденсационной турбиной и прямым использованием природного пара - это наиболее современная схема для получения электрической энергии. Пар из скважины подается в турбину. Отработанный в турбине, он попадает в смешивающий конденсатор. Смесь охлаждающей воды и конденсата уже отработанного в турбине пара выпускается из конденсатора в подземный бак, откуда забирается циркуляционными насосами и направляется для охлаждения в градирню. Из градирни охлаждающая вода опять попадает в конденсатор. Схема представлена на рисунке 4.5.2

По такой схеме работает геотермальная электростанция Лардерелло-3, использующая природный пар, самая крупная в Италии. Она была спроектиована в начале второй мировой войны, но вступила в строй только в после военные годы. На электростанции установлено четыре турбогенератора мощностью по 26 тыс. кВт и два турбогенератора по 9 тыс. кВт. Последние предназначены для покрытия собственных нагрузок.

Ни один из установленных здесь турбогенераторов в течение многих лет не переводился в резерв. Коэффициент использования установленной мощности составляет 98%. Стабильная работа геотермальной электростанции Лардерелло-3 открыла путь к конструированию новых электростанций с использованием конденсационных турбин. По такой схеме с некоторыми изменениями работают многие геотермальные электростанции: Лардерелло-2 (Италия), Вайракей (Новая Зеландия) и др.

Рисунок 4.5.2. Схема геотермальной электростанции с конденсационной турбиной и прямым использованием природного пара: 1- скважина; 2 - турбина; 3 - генератор; 4 - насос; 5- конденсатор; 6 - градирня; 7 - компрессор; 8- сброс.

Благодаря техническим усовершенствованиям потребление пара на каждый киловатт мощности стало значительно меньше. Сейчас расход пара на новой электростанции Лаго (Италия) составляет уже 8 кг/квт-ч.

4.5.2 Геотермальные электростанции с бинарным циклом

Геотермальная электростанция с паропреобразователем. Конденсационная турбина с паропреобразователем работает на вторичном паре. Эти станции наиболее выгодны там, где природный пар имеет высокую температуру и большое содержание газов. Схема электростанции следующая: природный пар из скважины поступает в паропреобразователь и свое тепло отдает вторичному теплоносителю, после чего чистый вторичный пар направляется в конденсационную турбину. Отработанный пар идет в конденсатор.

Неконденсирующиеся газы, содержащиеся в паре, отделяются в паропреобразователе и выбрасываются либо в атмосферу, либо идут на химические заводы. Недостатком этой схемы является снижение параметров пара перед турбиной. По сравнению с электростанциями, непосредственно использующими природный пар, удельный расход пара здесь меньше на 30%.

Геотермальная электростанция, работающая по этой схеме представленной на рисунке 4.5.3, позволяет полностью использовать все химические вещества, содержащиеся в природном паре.

Рисунок 4.5.3. Схема геотермальной электростанции с паропреобразователем:1 - скважина; 2 - паропреобразователь; 3 - турбина; 4 - генератор; 5 - конденсатор; 6 - вакуумный насос; 7 - градирня; 8 - насос; 9 - дегазатор; 10 - сброс.

Опыт подтверждает, что стоимость строительства геотермальной электростанции с паропреобразователем немного больше стоимости электростанции с прямым использованием пара в конденсационной турбине. По схеме с паропреобразователем были построены электростанции Лардерелло2 и Кастельнуово (Италия). На станции Лардерелло-2 установлено 7 турбин мощностью по 11 тыс. квт. Удельный расход пара на этой электростанции -- 14 кг/квт. Геотермальные электростанции с конденсационной турбиной, работающие на отсепарированном паре, строятся там, где из скважины получают пар с большим содержанием воды. Пар или пароводяная смесь из скважины направляется в специальное устройство, расположенное на скважине. Под давлением в сепараторе происходит разделение пароводяной смеси на пар и воду. Отсепарированный пар по трубопроводу направляется в турбину и т. д.

Конденсационные турбины, работающие на отсепарированном паре, нашли применение в строительстве геотермальных электростанций в России (Паужетское месторождение на Камчатке), Исландии (месторождение Хверагерди) и в других странах.

Рассмотренная схема имеет свои преимущества. Полученный в сепараторе пар практически не содержит газов, что облегчает работу турбин.

4.5.3 Схема Паужетской ГеоТЭС

В настоящее время проведены геологические, геофизические, гидрогеологические и другие исследования тепло-аномальных районов Камчатки; обнаружены большие ресурсы термальных вод с высокой температурой. Для получения электрической энергии за счет глубинного тепла Земли и строительства опытно-промышленной геотермальной станции гидрогеологи-разведчики сочли наилучшим районом долину реки Паужетки, расположенную на юге Камчатки, в 35 км от побережья Охотского моря.

В 1957 г. началось бурение разведочных скважин. При бурении на термальные воды, особенно в зоне вулканических проявлений, применяли глинистый раствор и, непрерывно промывая, охлаждали ствол скважины, что предотвратило пароводяные выбросы. Всего была пробурена 21 скважина глубиной от 220 до 480 м. Каждая в среднем давала около 10 кг/сек пароводяной смеси с теплосодержанием 170 ккал/кг. Одна из них с глубины 250 м вскрыла температуру 195 °С, другая с глубины 375 м - 200° С. По химическому составу Паужетские гидротермы принадлежат к типу хлоридных натриевых вод. Общая минерализация их составляет 1,0-3,4 г/л, температура на выходе из скважин - 144-200 °С, давление на устье скважины - 2-4 атм, рН от 8,0 до 8,2. Термальные воды содержат повышенные количества кремнекислоты (250 мг/л) и борной кислоты (150 мг/л). Пар насыщен также газами: углекислым - 500 мг/кг, сероводородом - 25 мг/кг, аммиаком -до 15 мг/кг и др.

По предварительным данным, Паужетское геотермальное месторождение даст возможность получать 30-50 тыс. кВт электрической мощности. Схема опытно-промышленной станции, предложенная институтом Теплоэлектропроект, представлена на рисунке 4.5.4.

Пароводяная смесь из скважины поступает в сепаратор (емкостью 10 м3, с нагрузкой парового объема 600-800 м3/час), расположенный на скважине. Здесь при давлении 1,5 атм происходит разделение пара и воды. Отсепарированный пар по паропроводу поступает к турбинам. Горячая вода с температурой 100-110 °С сбрасывается в реку, и только небольшая часть ее идет по трубам для отопления и горячего водоснабжения жилых зданий поселка и электростанции. На станции установлены смешивающие конденсаторы. Поскольку конденсат отработавшего в турбинах пара здесь бесполезен, такие конденсаторы компактнее и требуют меньше охлаждающей воды. Для удаления газов из конденсаторов установлены водоструйные эжекторы с расходом воды 800-900 м3/час. На ней установлены две турбины типа «МК-2,5» производства Калужского турбинного завода мощностью по 2,5 тыс. кВт каждая. Станция дает ток Озерновскому поселку, рыбокомбинату и близлежащим населенным пунктам.

Рисунок 4.5.3. Схема Паужетской опытно-промышленной геотермальной электростанции: 1 - скважина; 2 - сепаратор; 3 - паропровод; 4 - турбина; 5 - генератор; 6 - смешивающий конденсатор; 7 - водоструйный эжектор; 8 - эжекторный насос; 9 - барометрическая труба; 10 - бак охлаждающей воды; 11 - сливной колодец; 12 - насос горячей воды; 13 - трубопровод холодной воды

5. Использование биотоплива для энергетических целей

5.1 Производство биомассы для энергетических целей

Термин энергетическая ферма используется в очень широком смысле, обозначая производство энергии в качестве основного или дополнительного продукта сельскохозяйственного производства, лесоводства, аква-культуры, а кроме того, те виды промышленной и бытовой деятельности, в результате которых образуются органические отходы. Основной целью переработки сырья могло бы быть исключительно производство энергии, но более выгодно найти наилучшее соотношение между получением из различных видов биомассы энергии и биотоплива.

Наиболее характерный пример энергетических ферм представляют собой предприятия по выращиванию и комплексной переработке сахарного тростника (рисунок 5.1).

Рисунок 5.1. Агропромышленная переработка сахарного тростника

Производство зависит от сжигания отходов переработки тростника, необходимого для снабжения энергией всей технологической цепи. При надлежащей механизации можно было бы получить дополнительную энергию для производства на продажу побочных продуктов (патоки, химикатов, корма для животных, этилового спирта, строительных материалов, электроэнергии).

Следует отметить, что этиловый спирт и электроэнергию можно использовать для выращивания культур и выполнения транспортных операций. Развитие энергетики за счет использования сельскохозяйственных культур имеет как достоинства, так и недостатки. Один из наиболее существенных недостатков то, что производство энергии станет конкурировать с производством пищи. Крупномасштабное увеличение объема производства биотоплива (например, этилового спирта) по этой причине может оказать существенное отрицательное влияние на мировой рынок пищевых продуктов. Второй серьезный недостаток - возможность обеднения и эрозии почв в результате интенсификации выращивания «энергетических» культур. Очевидная стратегия спасения от этих явлений - выращивание культур, пригодных и для обеспечения человека (зерно), и для энергетических нужд при одновременном сокращении части урожая, скармливаемого животным. Для выращивания и переработки урожая необходима энергия в форме солнечного излучения и в форме, пригодной для получения топлива для работы сельхозмашин, создания самих этих машин, получения удобрения и т.п. Для оценки эффективности получения энергии из того или иного вида биомассы необходимо проведение энергетического анализа.

Энергетический анализ - это определение затрат энергии энергопотребляющих и энергопроизводящих систем, позволяющий выделить технические и технологические аспекты процесса. На практике энергетический анализ и связанный с ним анализ экономических факторов получения и переработки биомассы агропромышленным методом оказываются достаточно сложными. Однако использование для получения тепла и электроэнергии дешевых отходов биомассы может иметь решающее значение при оценке эффективности того или иного процесса.

5.2 Пиролиз

Под пиролизом подразумеваются любые процессы, при которых органическое сырье подвергают нагреву или частичному сжиганию для получения производных топлив или химических соединений. Изначальным сырьем могут служить древесина, отходы биомассы, городской мусор и конечно уголь. Продуктами пиролиза являются газы, жидкий конденсат в виде смол и масел, твердые остатки в виде древесного угля и золы. Газификация - это пиролиз, приспособленный для максимального получения производного газообразного топлива. Устройства для частичного сжигания биомассы, проектируемые в расчете на получение максимального выхода газов, называются газогенераторами. Схема установки для осуществления пиролиза приведена на рисунке 5.2. Наиболее предпочтительными считаются вертикальные устройства, загружаемые сверху. КПД пиролиза определяется как отношение теплоты сгорания производного топлива, к теплоте сгорания используемой в процессе биомассы. Достигаемый КПД весьма высок: 80-90%.

Рисунок 5.2. Установка для осуществления пиролиза

Чтобы процесс пиролиза шел успешно, должны соблюдаться определенные условия. Подаваемый материал предварительно сортируют для снижения негорючих примесей, подсушивают и измельчают. Критическим параметром, влияющим на температуру и на соотношение видов получаемых продуктов, является соотношение воздух - горючее. Проще всего управлять блоком, работающим при температуре ниже 600° С. При этом можно выделить четыре стадии перегонки:100-120 °С - подаваемый в газогенератор материал, опускаясь вниз, освобождается от влаги; 275 °С - отходящие газы состоят в основном из N2 , CO и CO2 ; извлекаются уксусная кислота и метанол; 280-350 °С - начинаются экзотермические реакции, в процессе которых выделяется сложная смесь летучих химических веществ (кетоны, альдегиды, фенолы, эфиры); свыше 350 °С - выделяются все типы летучих соединений; одновременно с образованием CO происходит увеличение образования H2, часть углерода сохраняется в форме древесного угля, смешанного с зольными остатками.

Разновидности топлива, получаемого в результате пиролиза, обладают меньшей по сравнению с исходной биомассой суммарной энергией сгорания, но отличаются большей универсальностью применения. Твердый остаток (максимальная массовая доля 25-35%). Современные установки для получения древесного угля, работающие при температуре 600 °С, преобразуют в требуемый продукт от 25 до 35% сухой биомассы. Древесный уголь на 75-85% состоит из углерода, обладает теплотой сгорания около 30 МДж/кг.

Жидкости (конденсированные испарения, максимальная массовая доля около 30%). Делятся на вязкие фенольные смолы и текучие жидкости, пиролигенные кислоты, в основном уксусную кислоту, метанол (максимум 2%) и ацетон. Жидкости могут быть отсепарированы либо могут использоватьсявместе в качестве необработанного топлива с теплотой сгорания около 22 МДж/кг.

Газы (максимальная массовая доля, получаемая в газогенераторах, составляет примерно 80%). Смесь выделяющихся при пиролизе газов с азотом известна как древесный газ, синтетический газ, генераторный газ или водяной газ. Теплота сгорания на воздухе составляет 5-10 МДж/кг (от 4 до 8МДж/м3 при нормальных условиях). Эти газы могут быть использованы непосредственно в дизелях или в карбюраторных двигателях с искровым зажиганием, при этом основная трудность - избежать попадания в цилиндры золы и конденсирующихся продуктов пиролиза. Газы в основном состоят из N2, H 2 и CO с малыми добавками CH4 и CO2 . Их можно накапливать в газгольдерах при давлении, близком к атмосферному.

5.3 Термохимические процессы

Биомасса может сжигаться или подвергаться пиролизу непосредственно после предварительной сортировки и измельчания. Однако, она может быть еще и обработана химически для того, чтобы получить исходный материал для спиртовой ферментации или вторичное топливо. Рассмотрим несколько наиболее важных примеров из большого числа возможных.


Подобные документы

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Изучение истории рождения энергетики. Использование электрической энергии в промышленности, на транспорте, в быту, в сельском хозяйстве. Основные единицы ее измерения выработки и потребления. Применение нетрадиционных возобновляемых источников энергии.

    презентация [2,4 M], добавлен 22.12.2014

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа [419,7 K], добавлен 06.05.2016

  • Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа [317,6 K], добавлен 19.03.2013

  • Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат [3,0 M], добавлен 18.10.2013

  • Технология выработки энергии на тепловых, атомных и гидравлических электростанциях. Изучение нетрадиционных методов получения ветровой, геотермальной, водородной энергии. Преимущества использования энергетических ресурсов Солнца и морских течений.

    реферат [1,1 M], добавлен 10.06.2011

  • Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат [3,4 M], добавлен 04.06.2015

  • Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа [135,3 K], добавлен 07.03.2016

  • Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие [2,2 M], добавлен 19.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.