Волновая и квантовая оптика
Явление полного внутреннего отражения. Получение интерференционной картины с помощью метода Юнга. Дисперсия и разрешающая сила спектрального прибора. Взаимодействие электромагнитных волн с веществом. Тепловое излучение тел и фотоэлектрический эффект.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 27.09.2017 |
Размер файла | 615,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Наряду с понятием черного тела используют понятие серого тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала, из которого сделано тело и состояния его поверхности
.
У реальных тел < 1 и зависит от частоты.
6.2 Закон Кирхгофа
Кирхгоф (1859 г.) нашел количественную связь излучательной и поглощательной способности: отношение излучательной и поглощательной способности не зависит от природы тела и является универсальной функцией частоты и температуры, одинаковой для всех тел:
,
где функция f(н,T) называется универсальной функцией Кирхгофа. Этот закон следует из того, что для теплового равновесия количества поглощаемой и излучаемой телом энергии должны быть равны для всех диапазонов частот:
.
Это равенство можно переписать в следующем виде: , откуда следует
где f(н,T)- общая для всех тел функция, характеризующая распределение энергии по частотам в падающем на тела тепловом излучении. Закон справедлив для любого тела, в том числе и для абсолютно черного. Поскольку его поглощательная способность равна единице, то из закона следует . Таким образом, универсальная функция Кирхгофа есть не что иное, как испускательная способность абсолютно черного тела. Из закона Кирхгофа следует, что испускательная способность любого тела меньше, чем абсолютно черного.
6.3 Законы Стефана-Больцмана и Вина
Открытие закона Кирхгофа потребовало тщательного изучения излучения абсолютно черного тела. В 1879 году польский физик Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что энергетическая светимость абсолютно черного тела R(T) пропорциональна четвертой степени абсолютной температуры T:
R(T) = T4
Несколько позднее, в 1884 году, Л. Больцман теоретически получил эту зависимость на основе термодинамических законов. Этот закон получил название закона Стефана-Больцмана. Числовое значение постоянной Стефана-Больцмана у составляет 5,671·10-8 Вт/(м2·К4). В дальнейшем в результате экпериментальных проверок было установлено, что такая зависимость с поправкой имеет место и для других тел.
Размещено на http://www.allbest.ru/
Закон Стефана-Больцмана не позволяет найти частотную зависимость излучения. Лишь к концу 90-х годов XIX века были выполнены тщательные экспериментальные измерения спектрального распределения излучения абсолютно черного тела, которые показали, что при каждом значении температуры T зависимость r(л, T) имеет свой ярко выраженный максимум (рис. 6.2). С увеличением температуры максимум смещается в область коротких длин волн, причем произведение температуры T на длину волны лm, соответствующую максимуму, остается постоянным:
лmT = b или лm = b / T.
Это соотношение было получено Вином в 1893 г. из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны лm, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина b = 2,898·10-3 м·К.
При практически достижимых в лабораторных условиях температурах максимум излучательной способности r(л, T) лежит в видимой красной и инфракрасной областях, поэтому нагретые тела приобретают красный цвет. Вид графиков (рис. 6.2) показывает, как спектральный максимум излучения смещается из инфракрасной в видимую (при T ? 5·103 К) и далее в ультрафиолетовую область при повышении температуры тела, что подтверждается экспериментально. Максимум энергии излучения Солнца приходится примерно на 470 нм (зелено-голубая область спектра), что соответствует температуре наружных слоев Солнца около 6200 К (если рассматривать Солнце как абсолютно черное тело).
6.4 Квантовый характер излучения
После установления законов излучения стало очевидно, что первоочередная задача теории теплового излучения состоит в нахождении вида функции Кирхгофа, т.е. выяснение спектрального состава равновесного излучения абсолютно черного тела. Решение этой задачи вышло далеко за рамки теории излучения и сыграло огромную роль во всем дальнейшем развитии физики, т.к. привело к установлению квантового характера излучения и поглощения энергии атомами и молекулами.
Существование на экспериментальных кривых (рис. 6.2) максимумов свидетельствует о том, что энергия излучения черного тела распределена по его спектру неравномерно - черное тело почти не излучает в области очень малых и очень больших частот.
В 1900 году эту проблему пытался решить знаменитый английский физик, барон Д.У. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия. Эта теорема была применена Релеем к равновесному излучению в полости. Равновесное электромагнитное излучение в замкнутой полости c постоянной температурой стенок он рассматривал как систему стоячих электромагнитных волн различных частот в 3-х измерениях. Колебания с различными частотами совершаются независимо друг от друга и каждой частоте соответствует своя колебательная степень свободы. Несколько позже эту идею подробно развил английский физик и астроном Д.Х.Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от частоты и температуры T:
Размещено на http://www.allbest.ru/
Это соотношение называют формулой Релея-Джинса. Оно согласуется с экспериментальными данными только в области достаточно длинных волн или малых частот (рис. 6.3). Кроме того, из него следует абсурдный вывод о том, что интегральная светимость R(T) черного тела должна обращаться при коротких (ультрафиолетовых) длинах волн в бесконечность, что было названо «ультрафиолетовой катастрофой» и что противоречило реально наблюдаемым данным.
Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена немецким физиком М. Планком на основе новой идеи, положившей начало квантовой физике.
В своих расчетах Планк выбрал наиболее простую модель излучающей системы - совокупности гармонических осцилляторов - атомов со всевозможными собственными частотами. Планк предположил, что энергия осциллятора не может принимать значения, меньшего некоторой минимальной величины , а любое другое значение энергии осциллятора кратно .
Данная минимальная порция энергии была названа квантом. Планк сделал еще одно предположение, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями - квантами. По теории Планка, энергия кванта прямо пропорциональна частоте света:
= hн,
где h - так называемая постоянная Планка, равная 6,626·10-34 Дж·с.
На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для излучательной способности абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам н, а не по длинам волн л.
.
Здесь c - скорость света, h - постоянная Планка, k - постоянная Больцмана, T - абсолютная температура.
Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана-Больцмана и Вина. При hн << kT формула Планка переходит в формулу Релея-Джинса.
Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики. Теоретически вывод своей формулы Планк изложил 14 декабря 1900 г. на заседании немецкого физического общества. Этот день стал датой рождения квантовой физики.
Таким образом, Планк выдвинул гипотезу, которая в дальнейшем блестяще подтвердилась и в других экспериментах, согласно которой энергия атома - осциллятора может изменяться не непрерывно, а только дискретно - квантами. Энергия кванта пропорциональна частоте колебаний, излучение и поглощение энергии при тепловом излучении тел квантовано.
6.5 Пирометрия и пирометры
Пирометрия - совокупность оптических бесконтактных методов измерения температуры (от греч. pyr - огонь и metreo - измеряю). Методы пирометрии применяют для измерения относительно высоких температур. При Т< 1000 ?С они играют в целом второстепенную роль, при Т>1000 ?С становятся главными, при Т>3000 ?С - практически единственными методами измерения температуры. Методы пирометрии не требуют контакта датчика измерительного прибора с телом, температура которого измеряется. Данными методами определяют температуру в печах и других нагревательных установках, температуру расплавленных металлов, температуру нагретых газов, плазмы. Измерение температуры осуществляют пирометрами - это приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра. Их действие основано на законах излучения абсолютно черного тела. Применяют яркостные, цветовые и радиационные пирометры.
7. Фотоэлектрический эффект
В 1887 г. немецкий физик Генрих Герц во время экспериментов по излучению электромагнитных волн обнаружил интересное явление. Когда он освещал металлический заряженный шар ультрафиолетовыми лучами, заряд шара изменялся. В дальнейшем, было установлено, что металл, облучённый ультрафиолетовым светом, заряжается положительно. При этом оказалось, что фотоэффект безинерционен, т.е. пластина начинает разряжаться сразу после того, как на нее падает свет.
В 1888-1890 г. русский ученый Александр Григорьевич Столетов подробно исследовал новое явление и установил его закономерности.
В 1899 г. немец Филипп Ленард и англичанин Джозеф Томсон доказали, что падающий на металлическую поверхность свет выбивает из неё отрицательно заряженные частицы. Измерение заряда этих частиц по их отклонению в магнитном поле показало, что они представляют собой электроны. Так было экспериментально доказано, что под действием света металл теряет отрицательно заряженные частицы - электроны.
Явление вырывания электронов из вещества под действием света (электромагнитного излучения) называют внешним фотоэффектом.
Установка Столетова для наблюдения фотоэффекта изображена на рис. 7.1. Плоский конденсатор, одной из обкладок которого служила медная сетка С, а второй - цинковая пластина D, был включен через гальванометр G в цепь аккумуляторной батареи Б. При освещении отрицательно заряженной пластины D светом от источника S в цепи возникал электрический ток, названный фототоком. Сила фототока была пропорциональна освещенности пластины D. Освещение положительно заряженной обкладки С не приводило к возникновению фототока.
Для более тщательного изучения фотоэффекта пользуются установкой, изображенной на рис. 7.2. В замкнутой колбе находятся два электрода: катод и анод. На катод, покрытый исследуемым металлом, падает свет через окошко закрытое кварцевым стеклом. Из колбы откачан воздух и создан вакуум, который необходим для того, чтобы предотвратить загрязнение поверхности металла, так как оно существенно влияют на эмиссию электронов. Между электродами подается напряжение, которое можно менять. При освещении отрицательно заряженного электрода в цепи возникает ток, который измеряется с помощью амперметра.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Данная установка, называемая вакуумным фотоэлементом, позволяет установить связь между поданным на электроды напряжением и током. Зависимость силы фототока от напряжения называется вольт-амперной характеристикой и имеет вид, изображенный на рис. 7.3.
Оказалось, что сила фототока, во-первых, прямо пропорциональна интенсивности падающего света, а во-вторых, при фиксированной интенсивности облучения она сначала растёт по мере повышения напряжения, но, достигнув определённого значения, уже не увеличивается. Это значение силы тока называется током насыщения.
Размещено на http://www.allbest.ru/
Объясняется данная зависимость достаточно просто. Под действием света электроны вырываются из металла катода, при этом катод заряжается положительно. Вырванные электроны, притягиваясь к катоду, частично возвращаются в металл, таким образом вблизи катода возникает отpицательно заpяженное облако электронов. Пpи U = 0 большая часть электpонов двигается в пределах облака, но небольшая часть электронов, имеющих большую кинетическую энергию, попадает на анод. Двигаясь по инерции далее, они создают небольшой анодный фототок I0. Если увеличивать анодное напpяжение, то, вследствие, увеличения сил притяжения электрического поля, все большее число электpонов будет попадать каждую секунду из облака на анод и анодный ток будет pасти. Пpи достаточно сильном электрическом поле облако из электpонов полностью исчезнет так как все электpоны, выpываемые каждую секунду, будут двигаться сразу к аноду - наступит насыщение: дальнейшее усиление поля не пpиведет к увеличению тока. Очевидно, ток насыщения опpеделяется тем количеством электpонов, котоpые выpываются светом каждую секунду из металла.
Если между катодом и анодом вакуумного фотоэлемента создать электрическое поле, тормозящее движение электронов к аноду, то при некотором значении задерживающего напряжения Uз анодный ток прекращается. Столетову удалось измерить это напряжение и по его величине рассчитать максимальную кинетическую энергию вырванных светом электронов.
А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
1. Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально интенсивности светового потока Е (количеству энергии падающей со светом за единицу времени на единичную поверхность катода) и не зависит от частоты света.
2. Для каждого вещества существует определенная для данного вещества минимальная частота 0, при которой еще возможен фотоэффект. Если частота света меньше минимальной частоты, то фотоэффект не происходит (0 называется «красной границей фотоэффекта», так как для многих металлов 0 лежит в области красного света.).
3. Максимальная начальная скорость вырываемых электронов определяется частотой света и не зависит от интенсивности падающего светового потока.
Объяснить природу фотоэффекта с помощью волновой теории света не удалось. С точки зрения классической электродинамики, свет - поток множества электромагнитных волн, они воздействуют электромагнитными силами на электроны внутри металла, сообщая им дополнительную кинетическую энергию, которую электроны могут потратить на преодоление сил притяжения со стороны кристаллической решетки металла. Так как интенсивность электромагнитного излучения пропорциональна амплитуде волны, то увеличение интенсивности света должно вести к значительному увеличению амплитуды волн и, соответственно, к увеличению сил, действующих на электроны. Такое воздействие должно давать электронам ускорение, рост скорости, энергии и приводить к увеличению возможности выхода электронов из металла.
Для света с очень маленькой интенсивностью фотоэффект не должен был бы наблюдаться сразу, так как, чтобы раскачать электрон и накопить энергию, волне нужно было бы затратить время порядка секунды, однако в экспериментах фотоэлектроны появляются немедленно после освещения металла. Это противоречие, т.е. безынерционность фотоэффекта объяснить волновой теорией не удалось.
Кроме этого, энергия вырванного электрона и его скорость должны зависеть по волновой теории только от амплитуды колебаний в волне, а не от его частоты. Поэтому объяснить третий закон фотоэффекта с помощью волновой теории также не удалось. Необъяснимым оставалось также, почему фототок возникал лишь тогда, когда частота падающего света превышала строго определённую для каждого металла величину.
Только в 1905 г. Эйнштейн раскрыл сущность фотоэффекта, за что получил Нобелевскую премию. Он предположил, что электромагнитное излучение не просто испускается порциями - оно и распространяется в пространстве, и поглощается веществом тоже в виде порций - световых квантов (элементарных частиц - фотонов). Энергия фотона связана с частотой электромагнитного излучения соотношением, предложенным ранее Планком, = h (h-постоянная Планка).
Согласно Эйнштейну, фотон, после его поглощения металлом, pасходует свою энеpгию на пpеодоление потенциального баpьеpа (эта часть энеpгии называется pаботой выхода электpона из металла А), а оставшуюся после этого энергию (если останется) на сообщение электpону вне металла кинетической энеpгии. Отсюда следует, что для возникновения фотоэффекта не важна интенсивность падающего светового пучка, главное, хватает ли отдельному световому кванту энергии, чтобы выбить электрон из вещества. Минимальная энергия необходимая для этого равна работе выхода. Необходимость затрат энергии на выход электронов из металла объяснятся также как и в классической теории: на вышедший электрон действует сила притяжения со стороны положительно заряженной области металла, из которой вышел электрон, и сила отталкивания со стороны электронного облака над металлом, созданного, ранее вышедшими, электронами. Если электрон освобождается светом не у самой поверхности, а на глубине, то часть энергии фотона может быть потеряна также вследствие случайных столкновений в веществе. Энергия электрона (и его скорость) будет максимальной, если потери равны нулю.
Закон сохpанения энергии позволяет написать пpостое соотношение, связывающее скоpость фотоэлектpонов с частотой поглощаемого света:
hv=А+Ek,
где hv - энергия, которую отдаёт фотон электрону вещества, А- работа выхода электрона из вещества, Ek = mv2/2 - кинетическая энергия освобождённого электрона. Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта. Теория Эйнштейна объясняет все законы Столетова.
Первый закон следует из того, что интенсивность света пропорциональна числу фотонов падающих за единицу времени на единичную поверхность, а каждый фотон вырывает примерно один электрон. Поэтому увеличение числа фотонов вызывает возрастание числа испущенных в единицу времени электронов. При этом в эксперименте с фотоэлементом, сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества.
Также становится ясно, что фотоэффект могут вызывать только фотоны соответствующие свету достаточно высокой частоты. Если h < A, то энергии фотона не хватит на вырывание электронов и они из поверхности металла не испускаются. Это означает, что фотоэффект будет происходить только при h > A, т.е. существует некоторая минимальная частота 0 = A/h, при которой начинается это явление (или граничная частота фотоэффекта).
Из формулы Эйнштейна следует также третий закон Столетова, так как видно что, максимальная начальная скорость электронов зависит только от частоты и материала катода (А). Увеличение интенсивности света вызывает лишь возрастание числа испущенных в единицу времени электронов, но не влияет на их энергию.
Опыты по экспериментальной проверке уравнения Эйнштейна были проведены Милликеном на установке подобной установке Столетова. Метод Милликена заключается в исследовании зависимости значения задерживающего потенциала Uз от частоты света и его интенсивности. Испущенные электроны с энергией Ek = h - А движутся к аноду, если потенциал Uз такой, что eUз > Ek, то ни один из электронов не может достичь коллектора и фототок исчезает, что позволяет измерить Uз. Согласно Эйнштейну, Uз = (h - А)/e и не зависит от интенсивности света. Эксперименты подтвердили все выводы теории Эйнштейна и позволили найти величину h, которая совпала с величиной постоянной Планка. Этот эксперимент подтвердил два предположения:
1. свет состоит из частиц - квантов;
2. энергия кванта равна h.
Фотоэффект обнаруживают практически все вещества, даже такие, как лед и вода, если освещать их ультрафиолетовым светом. Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Они применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.
До сих пор мы рассматривали случай, когда электрон получает энергию только от одного фотона. Такие процессы называются однофотонными. С изобретением лазеров были получены недостижимые ранее мощности световых пучков. Это дало возможность осуществить многофотонный фотоэффект, в ходе которого электрон, вылетающий из металла, получает энергию не от одного, а от N фотонов (N=2, 3, 4, 5, 6). Формула Эйнштейна в случае многофотонного фотоэффекта имеет вид:
Nhv=А+Ek.
Соответственно 0 = A/hN и красная граница фотоэффекта смещается в сторону более коротких частот.
Существует также внутренний фотоэффект - это вызываемые электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате этого концентрация свободных носителей тока внутри тела увеличивается, что приводит к повышению электропроводности. На основе данного явления конструируются полупроводниковые фотоэлементы. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве источников тока в часах, микрокалькуляторах, в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях. С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.
Эйнштейн выдвигает предположение, что свет сам по себе имеет корпускулярную природу, что имеет смысл смотреть на свет не как на поток волн, а как на поток частиц. Эйнштейн, вводя фотоны, совсем не отбрасывал волновую теорию света. Это видно уже из самой гипотезы о фотонах - энергия фотона пропорциональна частоте света. Можно сказать так: свет - ни волны, ни корпускулы в подлинном смысле этих слов, а нечто такое, что в опыте проявляется иногда как волны (интерференция, дифракция, поляризация), а иногда как поток корпускул, фотонов (черное излучение, фотоэффект и др.). И той и другой картиной - волновой и корпускулярной - приходится пользоваться смотря по обстоятельствам. Для описания одних явлений более подходит волновая точка зрения на свет, для описания других - фотонная. К настоящему времени построена единая непротиворечивая теория (квантовая теория поля или квантовая электродинамика). Она находится за пределами нашего курса, и мы ее (по причине сложности) не будем рассматривать, а удовлетворимся изложенной наглядной точкой зрения.
Размещено на Allbest.ru
Подобные документы
Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.
реферат [893,5 K], добавлен 20.03.2014Первые представления о природе света и теория зрительных лучей Евклида. Анализ законов геометрической оптики методом Гюйгенса и выведение законов отражения и преломления. Физический смысл показателя преломления и явление полного внутреннего отражения.
презентация [493,3 K], добавлен 07.09.2010Тепловое излучение как излучение телом электромагнитных волн за счет его внутренней энергии. Закон Кирхгофа и закон Стефана–Больцмана, их сущность. Понятие энергетической светимости и поглощательной способности тела. Формулы Рэлея–Джинса и Планка.
презентация [313,1 K], добавлен 29.09.2011Основные законы геометрической оптики. Принцип прямолинейного распространения света. Обратимость световых лучей. Явление полного внутреннего отражения в оптических приборах. Фотометрические величины и их единицы. Спектральное распределение яркости.
контрольная работа [17,6 K], добавлен 09.04.2013Оптический диапазон длин волн. Скорость распространения волн в однородной нейтральной непроводящей среде. Показатель преломления. Интерференция световых волн. Амплитуда результирующего колебания. Получение интерференционной картины от источников света.
презентация [131,6 K], добавлен 18.04.2013Предсказание Максвелла Дж.К. - английского физика, создателя классической электродинамики о существовании электромагнитных волн. Их экспериментальное получение немецким ученым Г. Герцем. Изобретение радио А.С. Поповым, основные принципы его действия.
реферат [13,5 K], добавлен 30.03.2011Длина электромагнитных волн рентгеновского излучения, его виды и их характеристика. Взаимодействие рентгеновского излучения с веществом. Основные виды рентгенодиагностики. Естественная и искусственная радиоактивность. Виды радиоактивного распада.
презентация [2,4 M], добавлен 30.09.2013Свойства света, его физическая природа и взаимодействие с веществом. Получение изображений точечных источников света и протяженных предметов. Закон отражения, нахождение изображений при отражении света от различных типов зеркал. Закон преломление света.
реферат [59,4 K], добавлен 26.04.2010Интерференция световых волн. Опыт Юнга. Методы наблюдения интерференции. Интерференция двух волн на поверхности жидкости, возбуждаемых вибрирующими стержнями. Время когерентности. Длина когерентности. Предельный наблюдаемый порядок интерференции.
презентация [8,5 M], добавлен 07.03.2016Распространение волн в упругой среде. Уравнение плоской и сферической волны. Принцип суперпозиции, разложение Фурье и эффект Доплера. Наложение встречных плоских волн с одинаковой амплитудой. Зависимость длины волны от относительной скорости движения.
презентация [2,5 M], добавлен 14.03.2016