Тепловой расчет парового котельного агрегата ДКВР-10-13

Определение состава и теплоты сгорания топлива. Расчет присосов воздуха и коэффициентов его избытка по отдельным газоходам. Калькуляция топочной камеры. Подсчет геометрических характеристик топок. Анализ выкладки конвективных поверхностей нагрева.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 17.09.2017
Размер файла 472,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию ГОУ ВПО

Магнитогорский государственный технический университет

имени Г.И.Носова

Энергетический факультет

Кафедра

Теплотехнических и энергетических систем

Курсовая работа

по дисциплине Котельные установки и парогенераторы

Тепловой расчёт парового котельного агрегата ДКВР-10-13

Выполнил:

Рахматуллин И.Ф.

Проверил:

Морозов А.П.

Магнитогорск 2006

Содержание

Глава 1. Описание котла типа ДКВР

Глава 2. Состав и теплота сгорания топлива

Глава 3. Расчёт объемов и энтальпий воздуха и продуктов сгорания

3.1 Определение присосов воздуха и коэффициентов избытка воздуха по отдельным газоходам

3.2 Расчёт объемов воздуха и продуктов сгорания

3.3 Расчет энтальпий воздуха и продуктов сгорания

Глава 4. Расчетный тепловой баланс и расход топлива

4.1 Расчет потерь теплоты

4.2 Расчёт КПД и расхода топлива

Глава 5. Расчёт топочной камеры

5.1 Определение геометрических характеристик топок

5.2 Расчёт теплообмена в топке

Глава 6. Расчёт конвективных поверхностей нагрева

6.1 Тепловой расчёт первого газохода

6.2 Тепловой расчёт второго газохода

6.3 Тепловой расчёт водяного экономайзера

6.4 Невязка теплового баланса

Библиографический список

Глава 1. Описание котла типа ДКВР

Условное обозначение парового котла ДКВР означает - двухбарабанный котел, водотрубный, реконструированный. Первая цифра после наименования котла обозначает паропроизводительность, т/ч, вторая - избыточное давление пара на выходе из котла, кгс/см2 - (для котлов с пароперегревателями давление пара за пароперегревателем), третья - температуру перегретого пара, °С.

Стационарные паровые котлы ДКВР разработаны ЦКТИ им. Ползунова совместно с Бийским котельным заводом. Котлы были разработаны в 40-х годах, а с 50-го года начался их поточно-серийный выпуск под маркой ДКВ. Впоследствии, в процессе изготовления и эксплуатации, эти котлы подверглись некоторым изменениям (сокращена длима топки, уменьшены шаги труб кипятильного пучка и т. п.) и с 1958 г. выпускаются под паркой ДКВР.

Котлы типа ДКВР применяются при работе как на жидком, газообразном, так и на различных видах твердого топлива. Вид используемых топочных устройств вносит определенные коррективы в компоновочные решения. Для работы на каменных и бурых углях, грохочёных антрацитах марок АС и АМ применяются полумеханические топки типа ПМЗ-РПК топки с пневмомеханическими забрасывателями и решеткой с поворотными колосниками; механические топки типа НМЗ-ЛРЦ, ПМЗ-ЧЦР и ЧЦР -- топки с пневмомеханическими забрасывателями с обратным ходом колосникового полотна ленточного и чешуйчатого типов. Для работы на древесных отходах котлы комплектуются топками системы Померанцева. Работа котлов на фрезерном топливе обеспечивается предтопками системы Шершнера. Кусковой торф сжигается в котлах, оборудованных шахтными топками или топками с решетками типа РПК (решетками с поворотным колосником) .

Конструктивная схема котлов типа ДКВР паропроизводительностью 2,5, 4, 6,5 и 10 т/ч одинакова независимо от используемого топлива и применяемого топочного устройства (рисунок 1).

Рисунок 1.

1- топочная камера, 2-кипятильный пучок, 3- кирпичная стенка, 4- камера догорания, 5-шамотная перегородка, 6- чугунная перегородка, 7-кипятильные трубы, 8- линии поступления питательной воды, 9- котельный пучок, 10- опускные трубы, 11- сепаратор влаги, 12- опорная рама, 13- паровые обдувочные аппараты, 14- устройство для возврата из газоходов на горящий слой недогоревшего угля, 15- питательные трубы, 16- предохранительный клапан, 17- труба для периодической продувки котла.

Перед котельным пучком котлов производительностью до 10 т/ч расположена топочная камера, которая для уменьшения потерь с уносом и химическим недожогом делится кирпичной шамотной перегородкой на две части: собственно топку и камеру догорания. Между первым и вторым рядами труб котельного пучка устанавливается шамотная перегородка, отделяющая кипятильный пучок от камеры догорания. Таким образом, первый ряд труб котельного пучка - задний экран камеры догорания. Внутри котельного пучка чугунная перегородка делит его на первый и второй газоходы. Выход газов из камеры догорания и из котла асимметричен. При наличии пароперегревателя часть кипятильных труб не устанавливается, пароперегреватель размещается в первом газоходе после второго и третьего ряда кипятильных труб. Вода в трубы фронтовых экранов котлов производительностью до 10 т/ч поступает одновременно из верхнего и нижнего барабанов. В котлах с короткими верхними барабанами применено двухступенчатое испарение и установлены выносные циклоны.

Питание боковых экранов водой осуществляется из нижних коллекторов, куда вода поступает по опускным трубам из верхнего барабана и одновременно по соединительным трубам из нижнего барабана. Такая схема подвода воды в коллекторы повышает надежность работы котла при пониженном уровне воды и способствует уменьшению отложений шлама в верхнем барабане.

В котлах без пароперегревателей при отсутствии особых требований к качеству пара и содержании котловой воды до 3000мг/л, а также в котлах с пароперегревателем при солесодержании котловой воды до 1500мг/л применяется сепарационное устройство, состоящее из жалюзи и дырчатых листов.

Барабаны котлов типа ДКВР на 1,3 и 2,3 МПа изготавливаются из низколегированной стали 16 ГС и имеют одинаковые диаметры 1000 мм, толщина стенки барабанов котлов с рабочим давлением 1,3МПа - 13мм, котлов с рабочим давлением 2,3МПа - 20мм. Бараны котлов оснащены лазовыми затворами, расположенными на задних днищах барабанов.

На котлах паропроизводительностью 6,5 и 10 т/ч с одноступенчатым испарением, работающих с давлением 1,3 и 2,3 МПа, лазовые затворы устанавливаются также и на передних днищах верхних барабанов.

По нижней образующей верхних барабанов всех котлов устанавливаются две легкоплавкие пробки, предназначенные для предупреждении перегрева стенок барабана под давлением. Сплав металла, которым заливают пробки, начинает плавиться при упуске воды из барабана и повышении температур его стенки до 280--320°С. Шум пароводяной смеси, выходящей через образующееся в пробке отверстие при расплавлении сплава, является сигналом персоналу для принятия экстренных мер к остановке котла. Завод-изготовитель применяет в легкоплавких пробках сплав следующего состава: свинец С2 или СЗ по ГОСТ 3778-56 - 90%: олово О1 или О2 по ГОС'Т860-60 - 10%. Колебания температуры плавления сплава допускается в пределах 240 - 310С.

Ввод питательной воды выполнен в верхний барабан, в водяном пространстве которого, она распределяется по питательной трубе. Для непрерывной продувки на верхнем барабане устанавливается штуцер, на котором смонтирована регулирующая и запорная арматура. В нижнем барабане устанавливаются перфорированная труба для периодической продувки и трубы для прогрева котла паром при растопке.

Гибы труб экранов и конвективного пучка выполнены с радиусом 400мм, при котором механическая очистка внутренней поверхности шарошками не представляет затруднений. Механическая очистка труб конвективного пучка и экранов производится из верхнего барабана. Камеры экранов очищаются через торцевые лючки, устанавливаемые на каждой камере.

Камеры котлов типа ДКВР изготавливаются из труб диаметром 219х8мм для котлов с рабочим давлением 1,3МПа. Конвективные пучки выполняются с коридорным расположением труб. Камеры, экранные и конвективные трубы котлов типа ДКВР изготавливаются из углеродистой стали марок 10 и 20.

Пароперегреватели котлов унифицированы по профилю и отличаются друг от друга для котлов разной производительности числом параллельных змеевиков. Располагают пароперегреватели в первом газоходе. Для изготовления пароперегревателей применяются трубы диаметром 32х3мм из стали 10. Камеры пароперегревателей выполняются из труб диаметром 133х5 мм для котлов с рабочим давлением 1,3 и 2,3 МПа. Входные концы труб пароперегревателя крепятся в верхнем барабане вальцовкой, выходные концы труб приваривают к камере (коллектору) перегретого пара. При рабочем давлении 1,3 и 2,3 МПа пароперегреватели выполняются одноходовыми по пару без пароохладителя. Температура перегрева пара при сжигании различных топлив может колебаться не выше 25 ?С.

Очистка наружных поверхностей нагрела от загрязнений в котлах осуществляется обдувкой насыщенным или перегретым паром с давлением перед соплами 0,7-1,7 МПа, допускается применять для этих целей сжатый воздух. Для обдувки применяют стационарные обдувочные приборы и переносные, используемые для отчистки экранов и пучков труб от золовых отложений через обдувочные лючки.

Котлы ДКВР-10-13 высокой компоновки опорной рамы не имеют. Температурные перемещения элементов котла относительно неподвижной опоры, которой является передняя опора нижнего барабана, обеспечиваются подвижными опорами камер боковых экранов и нижнего барабана.

В котлах паропроизводительностью 10 т/ч камеры фронтового и заднего экранов крепятся кронштейнами к обвязочному каркасу, камеры боковых экранов крепятся к специальным опорам. Во всех котлах верхние барабаны не имеют специальных опор, нагрузка от них через трубы конвективного пучка и экранов воспринимается опорами нижнею барабана и коллекторов.

Котлы типа ДКВР не имеют силового каркаса, в них применяется обвязочный каркас, который в котлах с облегчённой обмуровкой используется для крепления обшивки.

В блочно - транспортабельных котлах паропроизводительностью 10 т/ч на давление 1,3, 2,3, 3,9 МПа с короткими верхними барабанами применимо двухступенчатое испарение с установкой во второй ступени выносных циклов. Применение циклов позволяет уменьшить процент продувки и улучшить качество пара при работе на питательной воде с повышенным солесодержанием. В конвективный пучок вода поступает из верхнего барабана через обогреваемые трубы последних рядов труб самого пучка и через нижний барабан. Вода из выносных циклов поступает в нижние коллекторы экранов, а пар - в верхний барабан, где очищается вместе с паром первой ступени испарения, проходя через жалюзи и (дырчатый) перфорированный лист. Устойчивость работы циркуляционных контуров боковых экранов обеспечивается применением рециркуляционных труб диаметром 51мм.

Эти котлы предназначены не только для отопительпо-производственных целей и при давлении 39 атм. могут быть использованы в небольших энергетических установках.

Для всей серии котлов экраны и котельные пучки выполняются из стальных бесшовных труб диаметром 51 мм и толщиной стенки 2,5 мм. Боковые экраны выполнены с шагом 80 мм, в котлах с фронтовым и задним экраном шаг труб принят 130 мм. В кипятильных пучках трубы расположены в коридорном порядке с шагом 100 мм вдоль оси и 110 мм поперек оси котлов.

Ширина конвективного пучка котлов производительностью 2,5 и 4 т/ч -- 2180 мм производительностью 6,5 и 10 т/ч -- 2810 мм

При сжигании мазута и газа значительно меньше избытка воздуха, чем при сжигании твердого топлива, поэтому уменьшаются объемы продуктов сгорания, проходящих через котел, что позволяет повысить паропроизводительность котлов на 40--50%. Однако при этом должны быть выполнены условия, препятствующие повышению температуры стенки барабанов. В частности, необходимо обеспечивать тщательную подготовку питательной воды (для снижения накипеобразования) и надежно изолировать обогреваемую поверхность верхних барабанов в топке и камере догорания.

Последнее мероприятие в условиях высоких температур часто желательного эффекта не дает. Поэтому сокращение длины барабана, а гласное, то, что его стали размещать вне топочной камеры в сочетании с выносными циклонами, сделало работу котлов более надежной; появились котлы с укороченными барабанами и полностью экранированными топочными устройствами. На рисунке 2 показана циркуляционная схема котла ДКВР-10 с укороченным верхним барабаном (в низкой компоновке), выносными циклонами, экранными поверхностями и включением их в общую систему циркуляции котла.

Верхний барабан 1 в области топочной камеры заменен двумя коллекторами 2 экранов 3. Во II ступень испарении выделены передние части обоих боковых экранов путем установки в верхних 2 и нижних коллекторах 4 перегородок 5. Питание экранов II ступени испарения осуществляется из двух выносных циклонов 6 через опускные трубы 7, соединенные с нижними коллекторами 4 экранов 3. Подпитка циклонов ведется из нижнего барабана 8 по трубам 9. Пароводяная смесь из труб экранов поступает в переднюю часть верхних коллекторов 2, откуда по трубам 10 направляется в выносные циклоны 6. После отделения воды пар отводится по трубам 11 в барабан 1, а вода идет в опускные грубы циклонов. Питание экранов 1 ступени испарения происходит через трубы 12, приваренные к нижнему барабану и нижним коллекторам экранов. Пароводяная смесь из экранов этой ступени испарения отводится по трубам 13 в верхний барабан. Из-за небольшой высоты контуров у всех экранов обеих ступеней испарения имеются рециркуляционные трубы 14.

Питательными трубами кипятильного пучка 15 служат последние обогреваемые ряды. Пар отбирается через штуцер 16. Питательная вода поступает в барабан по трубам 17. Непрерывная продувка котла осуществляется только из циклонов; периодическая же - из верхнего и нижнего барабанов, сборных экранных коллекторов и из низа выносных циклонов.

Глава 2. Состав и теплота сгорания топлива

Донецкий угольный бассейн

: [1]

Низшая теплота сгорания рабочей массы жидкого топлива рассчитывается по формуле Д. И. Менделеева.

Глава 3. Расчёт объемов и энтальпий воздуха и продуктов сгорания

3.1 Определение присосов воздуха и коэффициентов избытка воздуха по отдельным газоходам

Коэффициент избытка воздуха по мере движения продуктов сгорания по газоходам котельного агрегата увеличивается. Это обусловлено тем, что давление в газоходах меньше давления окружающего воздуха и через неплотности в обмуровке происходят присосы атмосферного воздуха в газовый тракт агрегата.

Обычно при расчётах температуру воздуха принимают равной 30?С. При тепловом расчёте котлоагрегата присосы воздуха принимаются по нормативным данным таблица 1 [3].

Таблица 1

Топочные камеры и газоходы

Присос воздуха

Топочные камеры слоевых механических и полумеханических топок

0,1

Первый котельный пучок конвективной поверхности нагрева

0,05

Второй котельный пучок конвективной поверхности нагрева

0,1

Чугунный водяной экономайзер

0,1

Коэффициент избытка воздуха за каждой поверхностью нагрева после топочной камеры рассчитывается по формуле:

где - номер поверхности нагрева после топки по ходу продуктов сгорания;

- коэффициент избытка воздуха на выходе из топки ( топка с пневмомеханическим забрасывателем и неподвижной колосниковой решеткой)[2].

Коэффициент избытка воздуха за топкой

Коэффициент избытка воздуха за 1 - м котельным пучком

Коэффициент избытка воздуха за пароперегревателем

Коэффициент избытка воздуха за 2 - м котельным пучком

Коэффициент избытка воздуха за экономайзером

Коэффициент избытка воздуха за воздухоподогревателем

3.2 Расчёт объемов воздуха и продуктов сгорания

1. Определяем теоретический объем воздуха, необходимый для полного горения

2. Определяем теоретический объем продуктов сгорания

;

;

3. Определяем средний коэффициент избытка воздуха в газоходе для каждой поверхности нагрева

,

где - коэффициент избытка воздуха перед газоходом;

- коэффициент избытка воздуха после газохода.

для топки:

;

где - коэффициент избытка воздуха перед топкой.

для 1 - ого конвективного пучка:

;

для пароперегревателя:

для 2 - ого конвективного пучка:

;

для экономайзера:

;

для воздухоподогревателя

4. Определяем избыточное количество воздуха для каждого газохода

,

для топки:

;

для 1 - ого конвективного пучка:

;

для пароперегревателя:

для 2 - ого конвективного пучка:

;

для экономайзера:

.

5. Определяем действительный объем водяных паров

для топки:

;

для 1 - ого конвективного пучка:

;

для 2 - ого конвективного пучка:

;

для экономайзера:

;

6. Определяем действительный суммарный объем продуктов сгорания

для топки:

для 1 - ого конвективного пучка:

для 2 - ого конвективного пучка:

для экономайзера:

7. Определяем объемные доли трехатомных газов и водяных паров, а также суммарную объемную долю

;

;

.

для топки:

; ;

для 1 - ого конвективного пучка:

; ;

для 2 - ого конвективного пучка:

; ;

для экономайзера:

; ;

8. Определяем температуру точки росы????

,

где - парциальное давление водяных паров, МПа (для агрегатов, работающих без наддува [2]).

Для топки:

,

[3].

для 1 - ого конвективного пучка:

[3].

для 2 - ого конвективного пучка:

,

[3].

для экономайзера:

,

[3].

Результаты расчета сводим в таблицу 2.

Таблица 2 Объемы продуктов сгорания, объемные доли трехатомных газов

Величина

Расчетная формула

Теоретические объемы:

V0=6,319 м3/кг; V0N2=5 м3/кг;

VRO2=1,16 м3/кг; V0H2O=0,73м3/кг.

Газоход

Топка

1 - й конв. пучок

2 - й конв. пучок

Экономайзер

Коэффициент избытка воздуха после поверхности нагрева

(3.1)

1,4

1,45

1,55

1,65

Средний коэффициент избытка воздуха в газоходе поверхности нагрева

(3.6)

1,35

1,425

1,5

1,6

Избыточное количество воздуха, м3/кг

(3.7)

1,58

2,053

2,528

3,16

Объем водяных паров, м3/кг

(3.8)

0,755

0,763

0,77

0,781

Полный объем продуктов сгорания, м3/кг

(3.9)

8,495

8,976

9,458

10,101

Объемная доля трехатомных газов

(3.10)

0,137

0,129

0,123

0,115

Объемная доля водяных паров

(3.11)

0,089

0,085

0,081

0,077

Суммарная объемная доля

(3.12)

0,226

0,214

0,204

0,192

Температура точки росы, ?С

(3.13)

45,58

45,21

44,19

42,89

3.3 Расчет энтальпий воздуха и продуктов сгорания

1. Вычисляем энтальпию теоретического объема воздуха для всего выбранного диапазона температур

, кДж/кг

где - энтальпия 1 м3 воздуха, кДж/м3 (принимается для каждой выбранной температуры по приложению 1 [2]);

- теоретический объем воздуха, необходимый для горения (см. таблицу 2).

2. Определяем энтальпию теоретического объема продуктов сгорания для всего выбранного диапазона температур

, кДж/кг

где , , - энтальпии 1 м3 трехатомных газов, теоретического объема азота, теоретического объема водяных паров (принимаются по приложению 1 [2]);

, , - объемы трехатомных газов, теоретический объем азота и водяного пара (см. таблицу 2).

3. Определяем энтальпию избыточного количества воздуха для всего выбранного диапазона температур

, кДж/кг

4. Определяем энтальпию золы

где - величина уноса золы с газами [4]

- энтальпия золы, МДж/кг.[2]

5. Определяем энтальпию продуктов сгорания при коэффициенте избытка воздуха

, кДж/кг

Результаты расчета энтальпии продуктов сгорания по газоходам сводят в таблицу 3.

Таблица 3 Энтальпия продуктов сгорания, кДж/кг

Поверхность нагрева

Температура после поверхности нагрева, ?С

,

(3.13)

,

(3.14)

,

(3.15)

,

(3.16)

,

(3.17)

Верх топочной камеры

2000

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

19374,05

18318,78

17263,51

16220,87

15184,56

14148,24

13118,24

12094,57

11083,53

10078,81

9080,403

8119,915

7165,746

23355,55

22066,59

20776,71

19494,45

18221,27

16956,87

15699,6

14449,52

13208,52

11989,65

10780,23

9619,1

8436,99

7749,622

7327,512

6905,403

6488,349

6073,823

5659,296

5247,298

4837,826

4433,41

4031,522

3632,161

3247,966

2866,298

3467,52

3291,144

3016,192

2848,32

2588,256

2427,264

2183,712

1878,24

1663,584

1513,6

1358,112

1208,128

1058,144

34572,69

32688,25

30698,31

28831,12

26883,35

25043,43

23130,61

21165,59

19305,51

17534,77

15770,5

14075,19

12361,43

Первый конвективный пучок

900

800

700

600

500

400

300

8119,915

7165,746

6205,258

5257,408

4334,834

3431,217

2552,876

9619,1

8436,99

7284,33

6159,53

5069,19

3996,28

2954,48

3653,962

3224,586

2792,366

2365,834

1950,675

1544,048

1148,794

1208,128

1058,144

913,664

773,312

632,96

496,736

363,264

14481,19

12719,72

10990,36

9298,676

7652,825

6037,064

4466,538

Второй конвективный пучок

700

600

500

400

300

200

6205,258

5257,408

4334,834

3431,217

2552,876

1687,173

7284,33

6159,53

5069,19

3996,28

2954,48

1944,09

3412,892

2891,574

2384,159

1887,169

1404,082

927,9452

913,664

773,312

632,96

496,736

363,264

233,92

11610,89

9824,416

8086,309

6380,185

4721,826

3105,955

Водяной экономайзер

400

300

200

100

3431,217

2552,876

1687,173

840,427

3996,28

2954,48

1944,09

957,43

2230,291

1659,369

1096,662

546,2776

496,736

363,264

233,92

111,456

6723,307

4977,113

3274,672

1615,164

По данным таблицы 3 строим диаграмму донецкого угля (рисунок 3).

Рисунок 3. диаграмма донецкого угля

Глава 4. Расчетный тепловой баланс и расход топлива

4.1 Расчет потерь теплоты

При работе парового или водогрейного котла вся поступившая в него теплота расходуется на выработку полезной теплоты, содержащейся в паре или горячей воде, и на покрытие различных потерь теплоты. Суммарное количество теплоты, поступившее в котельный агрегат, называют располагаемой теплотой. Между теплотой, поступившей в котельный агрегат и покинувшей его, должно существовать равенство. Теплота, покинувшая котельный агрегат, представляет собой сумму полезной теплоты и потерь теплоты, связанных с технологическим процессом выработки пара или горячей воды. Следовательно, тепловой баланс котла для 1 кг сжигаемого твердого и жидкого топлива или 1 м3 газа при нормальных условиях имеет вид:

,

где - располагаемая теплота, кДж/кг;

- полезная теплота, содержащаяся в паре, кДж/кг;

- потери теплоты с уходящими газами, от химической неполноты сгорания, от механической неполноты сгорания, от наружного охлаждения, от физической теплоты, содержащейся в удаляемом шлаке, плюс потери на охлаждение панелей и балок, не включённый в циркуляционный контур котла, кДж/кг.

Тепловой баланс котла составляется применительно к установившемуся тепловому режиму, а потери теплоты выражаются в процентах располагаемой теплоты.

1. Потеря теплоты с уходящими газами (q2) обусловлена тем, что температура продуктов сгорания, покидающих котельный агрегат, значительно выше температуры окружающего атмосферного воздуха. Потеря теплоты с уходящими газами зависит от вида сжигаемого топлива, коэффициента избытка воздуха в уходящих газах, температуры уходящих газов, чистоты наружных и внутренних поверхностей нагрева, температуры воздуха, забираемого дутьевым вентилятором.

,

где - энтальпия уходящих газов, определяется по таблице 3 при соответствующих значениях и выбранной температуре уходящих газов кДж/кг;

- энтальпия теоретического объема холодного воздуха, определяется при tв=30°С, кДж/кг;

=- коэффициент избытка воздуха в уходящих газах, принимается по таблице 2 в сечении газохода после последней поверхности нагрева;

- потеря теплоты от механической неполноты горения (для угля q4 = 6 % [2]).

,

.

,

2. Потеря теплоты от химической неполноты сгорания (q3) обусловлена появлением в уходящих газах горючих газов СО, Н2, СН4. Потеря теплоты от химической неполноты горения зависит от вида топлива и содержания в нем летучих, способа сжигания топлива и конструкции топки, коэффициента избытка воздуха в топке, от уровня и распределения температуры в топочной камере, организации смесеобразовательных процессов в топке (горелке и топочной камере).

[4]

3. Потеря теплоты от механической неполноты горения (q4) наблюдается только при сжигании твердого топлива и обусловлена наличием в очаговых остатках твердых горючих частиц. Очаговые остатки в основном состоят из золы, содержащейся в топливе, и твердых горючих частиц, не вступивших в процессы газификации и горения. Считается, что твердые горючие частицы представляют собой чистый углерод.

Потеря теплоты от механической неполноты горения зависит от вида сжигаемого топлива и его фракционного состава, форсировки колосниковой решетки и топочного объема, способа сжигания топлива и конструкции топки, коэффициента избытка воздуха.

[2]

4. Потеря теплоты от наружного охлаждения (q5) обусловлена передачей теплоты от обмуровки агрегата наружному воздуху, имеющему более низкую температуру. Потеря теплоты от наружного охлаждения зависит от теплопроводности обмуровки, ее толщины, поверхности стен, приходящейся на единицу паропроизводительности.

,

где - потери тепла от наружного охлаждения при номинальной нагрузке парового котла [2];

- номинальная нагрузка парового котла, т/ч;

- расчётная нагрузка парового котла, т/ч.

5. Потери с физической теплотой удаляемых шлаков , возрастают с увеличением . Эти условия учитываются при слоевом, а также при камерном сжигании многозольных топлив по формуле:

где: кДж/кг - энтальпия шлака, при твердом шлакоудалении при ;

- доля золы топлива в шлаке и провале.

4.2 Расчёт КПД и расхода топлива

Коэффициентом полезного действия (КПД) парового или водогрейного котла называют отношение полезной теплоты к располагаемой теплоте. Не вся полезная теплота, выработанная агрегатом, направляется к потребителю. Часть выработанной теплоты в виде пара и электрической энергии расходуется на собственные нужды. Так, например, на собственные нужды расходуется пар для привода питательных насосов, на обдувку поверхностей нагрева и т.д., а электрическая энергия -- для привода дымососа, вентилятора, питателей топлива, мельниц системы пылеприготовления и т. д. Под расходом на собственные нужды понимают расход всех видов энергии, затраченной на производство пара или горячей воды. Поэтому различают КПД агрегата брутто и нетто. Если КПД агрегата определяется по выработанной теплоте, то его называют брутто, а если по отпущенной теплоте -- нетто.

1) По уравнению обратного баланса находим КПД брутто

,

2) Из уравнения прямого теплового баланса находим расход топлива, подаваемого в топку (равному расчетному расходу топлива)

,

где - полезная мощность котла, кВт;

,

где кг/с - расход выработанного перегретого пара;

кДж/кг - энтальпия перегретого пара при Р=1,37МПа и 250С [3];

кДж/кг - энтальпия питательной воды при 100[3];

кДж/кг - энтальпия кипящей воды в барабане котла при Р=1,3МПа [4];

- непрерывная продувка парового котла.

.

,

- расчетный расход топлива с учетом потери тепла от механической неполноты горения.

3) Определяем коэффициент сохранения теплоты

.

Глава 5. Расчёт топочной камеры

5.1 Определение геометрических характеристик топок

При поверочном расчете топки по чертежам необходимо определить: объем топочной камеры, степень ее экранирования, площадь поверхности стен и площадь лучевоспринимающих поверхностей нагрева, а также конструктивные характеристики труб экранов (диаметр труб, расстояние между осями труб).

Для определения геометрических характеристик топки составляется ее эскиз. Активный объем топочной камеры складывается из объема верхней, средней (призматической) и нижней частей топки. Для определения активного объема топки ее следует разбить на ряд элементарных геометрических фигур. Верхняя часть объема топки ограничивается потолочным перекрытием и выходным окном, перекрытым фестоном или первым рядом труб конвективной поверхности нагрева. При определении объема верхней части топки за его границы принимают потолочное перекрытие и плоскость, проходящую через оси первого ряда труб фестона или конвективной поверхности нагрева в выходном окне топки.

Нижняя часть камерных топок ограничивается подом или холодной воронкой, а слоевых -- колосниковой решеткой со слоем топлива. За границы нижней части объема камерных топок принимается под или условная горизонтальная плоскость, проходящая посередине высоты холодной воронки.

Полная площадь поверхности стен топки (FCT) вычисляется по размерам поверхностей, ограничивающих объем топочной камеры. Для этого все поверхности, ограничивающие объем топки, разбиваются на элементарные геометрические фигуры. Площадь поверхности стен двухсветных экранов и ширм определяется как удвоенное произведение расстояния между осями крайних труб этих экранов и освещенной длины труб.

1. Определение площади ограждающих поверхностей топки

В соответствии с типовой обмуровкой топки котла ДКВР-10-13, которая показана на рисунке 4, подсчитаем площади ограждающих её поверхностей, включая поворотную камеру. Внутренняя ширина котла равна 2810 мм [2].

Рисунок 4. Схема топки котла ДКВР-10 и её основные размеры

,

где - расстояние между осями крайних труб данного экрана, м;

- освещенная длина экранных труб, м.

Боковые стены ,

Передняя стена ;

Задняя стена ;

Две стены поворотной камеры ;

Потолок ;

Под топки и поворотной камеры

;

Общая площадь ограждающих поверхностей

.

.

2. Определение лучевоспринимающей поверхности нагрева топки

Общую лучевоспринимающую поверхность нагрева топки определяют как сумму отдельных составляющих

.

5.2 Расчёт теплообмена в топке

Расчет теплообмена в топках паровых и водогрейных котлов основывается на приложении теории подобия к топочным процессам. Для расчета теплообмена в однокамерных и полуоткрытых топках рекомендуется формула, связывающая безразмерную температуру продуктов сгорания на выходе из топки () с критерием Больцмана (Во), степенью черноты топки () и параметром (), учитывающим характер распределения температур по высоте топки:

.

Безразмерная температура продуктов сгорания на выходе из топки () представляет собой отношение действительной абсолютной, температуры на выходе из топки () к абсолютной теоретической температуре продуктов сгорания (). Под теоретической температурой продуктов сгорания (адиабатной температурой) понимают максимальную температуру при сжигании топлива с расчетным коэффициентом избытка воздуха, которую могли бы иметь продукты сгорания, если бы в топке отсутствовал теплообмен с экранными поверхностями нагрева.

Критерий Больцмана представляет собой характеристическое число, контролирующее соотношение между конвективным переносом теплоты и излучением абсолютно черного тела при температуре рассматриваемого элементарного объема.

Критерий Больцмана вычисляется по формуле:

,

где -- коэффициент сохранения теплоты;

-- расчетный расход топлива, кг/с;

-- площадь поверхности стен топки, м2;

-- среднее значение коэффициента тепловой эффективности экранов;

-- средняя суммарная теплоемкость продуктов сгорания 1 кг топлива в интервале температур -- , кДж/(кг·К);

5,67·10-8-- коэффициент излучения абсолютно черного тела, Вт/(м2·К4);

-- абсолютная теоретическая температура продуктов сгорания, К.

Степенью черноты топки () называют отношение излучательной способности действительной топки к излучательной способности абсолютно черного тела. Степень черноты топки зависит от излучательной способности пламени факела (слоя горящего топлива), конструкции тепловоспринимающих поверхностей нагрева и степени их загрязнения.

Коэффициент пропорциональности (), определяющий относительное изменение интенсивности луча в поглощающем слое единичной толщины, называют коэффициентом ослабления луча. Он определяет интенсивность ослабления лучей в поглощающей среде и, следовательно, характеризует полную поглощательную способность среды, определяемую как поглощением, так и рассеянием.

В топочной камере основными газами, способными поглощать тепловые лучи, являются трехатомные газы, состоящие из RO2 и водяных паров Н2О. Поглощательная способность RO2 при постоянном давлении и температуре однозначно определяется произведением его парциального давления () и толщины слоя (s). Поглощательная способность водяного пара при заданной температуре зависит от двух величин: 1) от произведения парциального давления водяного пара и толщины слоя () и 2) от толщины слоя (s) либо от парциального давления ().

Коэффициент ослабления лучей -- это основная характеристика любой мутной среды, определяющая, ее излучательную, рассеивающую и поглощательную способности. Поэтому применительно к топкам котельных агрегатов задача сводится к определению коэффициента ослабления лучей в зависимости от характера пламени.

При расчете несветящихся пламен необходимо определить коэффициент ослабления лучей только трехатомными газами, полусветящихся пламен -- дополнительно коэффициенты ослабления лучей частицами золы и кокса, а светящихся -- частицами сажи.

Параметр М учитывает распределение температуры по высоте топочной камеры и характеризует влияние максимума температуры пламени на эффект суммарного теплообмена. Он зависит от вида топлива, способа его сжигания, типа горелок, их расположения на стенах топки и функционально связан с относительным уровнем расположения горелок по высоте топочной камеры.

Угловым коэффициентом () называется отношение количества энергии, посылаемой на облучаемую поверхность, к энергии излучения всей полусферической излучающей поверхности. Угловой коэффициент показывает, какая часть полусферического лучистого потока, испускаемого одной поверхностью, падает на другую поверхность и зависит от формы и взаимного расположения тел, находящихся в лучистом теплообмене. Значение х определяется из рисунка 8.

Коэффициент учитывает снижение тепловосприятия экранных поверхностей нагрева вследствие их загрязнения наружными отложениями или закрытия огнеупорной массой. Если стены топки покрыты экранами с разными угловыми коэффициентами или частично покрыты огнеупорной массой (огнеупорным кирпичом), то определяется среднее значение коэффициента тепловой эффективности. При этом для неэкранированных участков топки коэффициент тепловой эффективности принимается равным нулю. При определении среднего коэффициента тепловой эффективности суммирование распространяется на все участки топочных стен. Для этого стены топочной камеры должны быть разбиты на отдельные участки, в которых угловой коэффициент и коэффициент загрязнения неизменны.

1. Предварительно задаёмся температурой продуктов сгорания на выходе из топочной камеры

2. Для выбранной температуры определяем энтальпию продуктов сгорания на выходе из топки по таблице 3.

.

3. Полезное тепловыделение в топке

где - теплота, вносимая в топку воздухом, кДж/кг

где кДж/кг - энтальпия теоретически необходимого горячего воздуха (см. (4.3), (4.4))

.

4. Коэффициент тепловой эффективности экранов

,

где: [приложение 1, рисунок 9] - угловой коэффициент

[2] - коэффициент загрязнения учитывает снижение тепловосприятия экранных поверхностей нагрева в следствие их загрязнения внешними отложениями или закрытия огнеупорной массой.

.

5. Эффективная толщина излучающего слоя

,

где - объем топочной камеры, м3.

- площадь поверхности стен топки.

,

,

.

6. Коэффициент ослабления лучей

,

где - суммарная объемная доля трёхатомных газов (таблица 2);

- коэффициент ослабления лучей трехатомными газами, (м·МПа)-1;

- коэффициент ослабления лучей частицами кокса[2], (м·МПа)-1;

- коэффициент ослабления лучей частицами летучей золы [приложение 1, рис.13], (м·МПа)-1 ;

- средняя массовая концентрация золы.

,

где - парциальное давление трёхатомных газов, МПа (для агрегатов, работающих без наддува [2]).

.

,

где м/кг - полный объем продуктов сгорания (таблица 2);

.

7. Суммарная оптическая толщина среды

8. Степень черноты среды заполняющей топку

Эту величину можно определить графически или по формуле:

9. Площадь зеркала горения (активной части колосниковой решетки),

,

К установке принимается топка с площадью зеркала горения

где - удельная нагрузка зеркала горения, принимается в зависимо-сти от конструкции топки [2].

10. Степень черноты топки

.

9. Параметр М в зависимости от относительного положения максимума температуры пламени по высоте топки ()

,

где - относительное положение максимума температуры для слоевых топок при сжигании в тонком слое (топки с пневмомеханическими забрасывателями). сгорание топливо топка нагрев

10. Средняя суммарная теплоёмкость продуктов сгорания на 1 кг топлива при нормальных условиях

,

где - теоретическая температура горения, определяется из таблицы 3 по значению (см. п.3).

,

.

.

11. Действительная температура на выходе из топки

Составляем сводную таблицу.

Таблица 5 Теплотехнические характеристики топочной камеры

Наименование величин

Услов. Обоз-начение

Расчётные формулы

Ре-зультаты

Общая площадь ограждающих поверхностей, м2

Fст

(5.2)

89

Лучевоспринимающая поверхность нагрева, м2

Hл

(5.3)

37

Предварительная температура продуктов сгорания, ?С

Т"Т

(5.6)

1150

Энтальпия продуктов сгорания на выходе из топки, кДж/кг

I"T

(5.7)

18420

Полезное тепловыделение в топке, кДж/кг

QT

(5.8)

24100

Коэффициент тепловой эффективности экранов

Ш

(5.10)

0,34

Объем топочной камеры, м3

VT

(5.12)

43

Эффективная толщина излучающего слоя, м

s

(5.11)

1,739

Коэффициент ослабления лучей, (м·МПа)-1

k

(5.13)

2,17

Суммарная оптическая толщина среды

(5.16)

0,377

Степень черноты среду заполняющей топку

(5.17)

0,314

Степень черноты топки

(5.19)

0,238

Расчётный коэффициент

М

(5.20)

0,59

Средняя суммарная теплоёмкость продуктов сгорания на 1 кг топлива, кДж/кг·К

VCcp

(5.21)

18,89

Теоретическая температура горения, ?С

Ta

(5.22)

1451

Действительная температура на выходе из топки, ?С

(5.23)

1170

Глава 6. Расчёт конвективных поверхностей нагрева

Конвективные поверхности нагрева паровых и водогрейных котлов играют важную роль в процессе получения пара или горячей воды, а также использования теплоты продуктов сгорания, покидающих топочную камеру. Эффективность работы конвективных поверхностей нагрева в значительной мере зависит от интенсивности передачи теплоты продуктами сгорания воде и пару.

При расчете конвективных поверхностей нагрева используется уравнение теплопередачи и уравнение теплового баланса.

Уравнение теплопередачи

.

Уравнение теплового баланса

где К -- коэффициент теплопередачи, отнесенный к расчетной поверхности нагрева, Вт/(м2·К);

-- температурный напор, °С;

Вр -- расчетный расход топлива, кг/с;

Н -- расчетная поверхность нагрева, м2;

-- коэффициент сохранения теплоты, учитывающий потери теплоты от наружного охлаждения;

I', I" -- энтальпии продуктов сгорания на входе в поверхность нагрева и на выходе из нее, кДж/кг;

-- количество теплоты, вносимое присасываемым в газоход воздухом, кДж/кг.

Коэффициент теплопередачи (К) является расчетной характеристикой процесса и всецело определяется явлениями конвекции, теплопроводности и теплового излучения.

Из уравнения теплопередачи ясно, что количество теплоты, переданное через заданную поверхность нагрева, тем больше, чем больше коэффициент теплопередачи и разность температур продуктов сгорания и нагреваемой жидкости. Очевидно, что поверхности нагрева, расположенные в непосредственной близости от топочной камеры, работают при большей разности температуры продуктов сгорания и температуры воспринимающей теплоту среды. По мере движения продуктов сгорания по газовому тракту температура их уменьшается и хвостовые поверхности нагрева работают при меньшем перепаде температур продуктов сгорания и нагреваемой среды. Поэтому чем дальше расположена конвективная поверхность нагрева от топочной камеры, тем большие размеры должна она иметь и тем больше металла расходуется на ее изготовление.

Уравнение теплового баланса показывает, какое количество теплоты отдают продукты сгорания воде или пару через конвективную поверхность нагрева.

Количество теплоты (Qб), отданное продуктами сгорания приравнивается к теплоте, воспринятой водой или паром. Для расчета задаются температурой продуктов сгорания после рассчитываемой поверхности нагрева и затем уточняют ее путем последовательных приближений. В связи с этим расчет ведут для двух значении температуры продуктов сгорания после рассчитываемого газохода.

6.1 Тепловой расчёт первого газохода

1. По чертежу определяются конструктивные характеристики рассчитываемого конвективного газохода: площадь поверхности нагрева, шаг труб и рядов (расстояния между осями труб), диаметр труб, число труб в ряду, число рядов труб и площадь живого сечения для прохода продуктов сгорания. Для данной конструкции котла ширина газохода а=1,6 м, а высота b=2,1 м [2].

Таблица 6 Конструктивные характеристики первого газохода [2]

Наименование величин

Условные обозначения

Результаты

Поверхность нагрева, м2

Н

134

Число рядов труб:

вдоль оси котла

поперек оси котла

z1

z2

16

22

Диаметр труб, мм

dн

51х2,5

Расчётные шаги труб в мм.

продольный

поперечный

S1

S2

100

110

2. Площадь живого сечения для прохода продуктов сгорания

.

3. Предварительно принимаем два значения температуры продуктов сгорания после рассчитанного газохода.

4. Определяем тепло, отданное продуктами сгорания (6.2)

,

где - коэффициент сохранения теплоты (4.12);

- энтальпия продуктов сгорания перед поверхностью нагрева, определяется по таблице.3 при температуре и коэффициенте избытка воздуха после поверхности нагрева, предшествующей рассчитываемой поверхности (5.7);

- энтальпия продуктов сгорания после рассчитываемой поверхности нагрева, определяется по таблице 3 при двух предварительно принятых температурах после конвективной поверхности нагрева;

- присос воздуха в конвективную поверхность нагрева, определяется как разность коэффициентов избытка воздуха на входе и выходе из неё (таблица 1);

- энтальпия присосанного в конвективную поверхность нагрева воздуха, при температуре воздуха 30?С (4.4).

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

.

5. Определяем расчётную температуру потока продуктов сгорания в конвективном газоходе

,

где - температура продуктов сгорания на входе в поверхность и на выходе из неё.

для температуры 600?С после конвективной поверхности нагрева:

.

6. Определяем температурный напор

,

где tк - температура охлаждающей среды (температура кипения воды при давлении в котле [3]).

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

.

7. Определяем среднюю скорость продуктов сгорания в поверхности нагрева

,

где Вр - расчётный расход топлива (4.10), кг/с;

F - площадь живого сечения для прохода продуктов сгорания (6.3);

VГ - объем продуктов сгорания на 1 кг топлива (таблица 2);

- средняя расчётная температура продуктов сгорания (6.4), ?С.

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

.

8. Определяем коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева

,

где - коэффициент теплоотдачи (приложение 1,рисунок 10);

- поправка на число рядов труб по ходу продуктов сгорания (приложение 1, рисунок 10);

- поправка на компоновку пучка (приложение 1, рисунок 10);

- коэффициент, учитывающий влияние изменения физических параметров потока (приложение 1, рисунок 10);

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

9. Определяем степень черноты газового потока

где - коэффициент ослабления лучей трехатомными газами (5.14), (м·МПа)-1;

р - давление в газоходе, МПа;

s - толщина излучающего слоя, м.

,

,

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

10. Определяем коэффициент теплоотдачи, учитывающий передачу теплоты излучением в конвективных поверхностях нагрева

,

где - коэффициент теплоотдачи (приложение 1, рисунок 11 б)), Вт/м2·К;

а - степень черноты.

Вт/м;

Вт/м.

Для определения вычисляется температура загрязненной стенки

,

где t - средняя температура окружающей среды (температура насыщения при давлении в котле Р=1,3 МПа[3]), ?С;

?С - при сжигании твердых топлив.

.

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

.

11. Определяем суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрев

,

где - коэффициент использования, учитывающий уменьшение тепловосприятия поверхности нагрева вследствие неравномерного омывания её продуктами сгорания, частичного протекания продуктов сгорания мимо неё и образования застойных зон; для поперечного омывания пучков принимается [2].

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

.

12. Определяем коэффициент теплопередачи

,

где - коэффициент тепловой эффективности [2].

для температуры 300?С после конвективной поверхности нагрева:

,

для температуры 600?С после конвективной поверхности нагрева:

.

13. Определяем количество теплоты, воспринятое поверхностью нагрева, на 1 кг топлива (6.1)

,

для температуры 300?С после конвективной поверхности нагрева:

,

,

для температуры 600?С после конвективной поверхности нагрева:

,

.

14. По принятым двум значениям температуры и полученным двум значениям Qб и QТ производится графическая интерполяция для определения температуры продуктов сгорания после поверхности нагрева.

не более чем на 50?С меньше или больше предварительно выбранной, поэтому определяем только , сохранив прежний коэффициент теплоотдачи.

.

Составляем сводную таблицу.

Таблица 7 Теплотехнические характеристики первого газохода

Наименование величины

Услов. обоз-нач.

Расчёт-ная форму-ла

Результаты при

300?С

600?С

Температура дымовых газов перед 1-м газоходом, ?С

(5.23)

1070

1070

Теплосодержание дымовых газов перед 1-м газоходом, кДж/кг

(5.7)

18744,29

18774,29

Температура дымовых газов за первым газоходом, ?С

рис. 5

300

600

Теплосодержание дымовых газов за 1-м газоходом, кДж/кг

Таб. 3,

(5.7)

4466,538

9298,6

Теплота, отданная продуктам сгорания, кДж/кг

Qб

(6.2)

14033,9

9409,4

Расчётная температура потока продуктов сгорания в конвективном газоходе, ?С

(6.5)

735

885

Температурный напор, ?С

Дt

(6.6)

543

693

Средняя скорость продуктов сгорания в поверхности нагрева, м/с

(6.6)

4,882

5,399

Коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева, Вт/м2·К

(6.9)

48,15

51

Толщина излучающего слоя, м

s

(6.10)

0,201

0,201

Коэффициент ослабления лучей трёхатомными газами, (м·МПа)-1

кГ

(5.14)

31,45

29,05

Суммарная сила поглощения газовым потоком, м-ата

крs

(5.16)

0,135

0,125

Степень черноты газового потока

a

Прил.1

0,126

0,118

Коэффициент теплоотдачи излучением не запыленного потока, Вт/м2·К

(5.17)

4,16

8,73

Температура загрязненной стенки, ?С

tз

(6.12)

217

217

Суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрева, Вт/м2·К

(6.13)

52,31

59,73

Коэффициент теплопередачи, Вт/м2·К

К

(6.14)

34

38,83

Температурный напор, ?С

Дt

(6.16)

395

652,7

Количество теплоты, воспринятое поверхностью нагрева, кДж/кг

QТ

(6.15)

5424

10240

6.2 Тепловой расчёт второго газохода

1. По чертежу определяются конструктивные характеристики второго конвективного газохода: площадь поверхности нагрева, шаг труб и рядов (расстояния между осями труб), диаметр труб, число труб в ряду, число рядов труб и площадь живого сечения для прохода продуктов сгорания (таблица 8). Для данной конструкции котла ширина газохода а=1,075 м, а высота b=2,1 м [2].

Таблица 8 Конструктивные характеристики второго газохода [2]

Наименование величин

Условные обозначения

Результаты

Поверхность нагрева, м2

Н

93

Число рядов труб:

вдоль оси котла

поперек оси котла

z1

z2

11

22

Диаметр труб, мм

dн

51х2,5

Расчётные шаги труб в мм.

продольный

поперечный

S1

S2

100

110

2. Площадь живого сечения для прохода продуктов сгорания (6.3)

.

3. Предварительно принимаем два значения температуры продуктов сгорания после рассчитанного газохода и .

4. Определяем тепло, отданное продуктам сгорания (6.2), кДж/кг

,

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:

.

5. Определяем расчётную температуру потока продуктов сгорания в конвективном газоходе (6.5)

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:

.

6. Определяем температурный напор (6.6)

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:

.

7. Определяем среднюю скорость продуктов сгорания в поверхности нагрева (6.7)

,

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:

.

8. Определяем коэффициент теплоотдачи конвекцией от продуктов сгорания к поверхности нагрева (6.8)

,

для температуры 200?С после конвективной поверхности нагрева:

для температуры 400?С после конвективной поверхности нагрева:

9. Определяем степень черноты газового потока (6.9),

,

,

для температуры 200?С после конвективной поверхности нагрева:

.

,

для температуры 400?С после конвективной поверхности нагрева:

10. Определяем коэффициент теплоотдачи, учитывающий передачу теплоты излучением в конвективных поверхностях нагрева (6.11), (6.12)

,

,

.

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:

.

11. Определяем суммарный коэффициент теплоотдачи от продуктов сгорания к поверхности нагрев (6.13)

,

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:

.

12. Определяем коэффициент теплопередачи (6.14)

,

где - коэффициент тепловой эффективности для конвективных поверхностей нагрева при сжигании каменного угля[2].

для температуры 200?С после конвективной поверхности нагрева:

,

для температуры 400?С после конвективной поверхности нагрева:


Подобные документы

  • Расчет топочной камеры котельного агрегата. Определение геометрических характеристик топок. Расчет однокамерной топки, действительной температуры на выходе. Расчет конвективных поверхностей нагрева (конвективных пучков котла, водяного экономайзера).

    курсовая работа [139,8 K], добавлен 06.06.2013

  • Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.

    курсовая работа [1000,2 K], добавлен 19.12.2015

  • Расчет объема продуктов сгорания и воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет конвективных поверхностей нагрева и экономайзера. Составление прямого баланса.

    курсовая работа [756,1 K], добавлен 05.08.2011

  • Описание конструкции и технических характеристик котельного агрегата ДЕ-10-14ГМ. Расчет теоретического расхода воздуха и объемов продуктов сгорания. Определение коэффициента избытка воздуха и присосов по газоходам. Проверка теплового баланса котла.

    курсовая работа [2,4 M], добавлен 23.01.2014

  • Определение состава топлива для котельной установки, расчёт объёмов и энтальпий воздуха и продуктов сгорания. Определение геометрических характеристик топочной камеры, расчёт конвективного парогенератора, конвективных поверхностей нагрева топок.

    курсовая работа [488,4 K], добавлен 27.10.2011

  • Расчетные характеристики топлива. Расчет теоретических объемов воздуха и основных продуктов сгорания. Коэффициент избытка воздуха и объемы дымовых газов по газоходам. Тепловой баланс котла и топки. Тепловой расчет конвективных поверхностей нагрева.

    контрольная работа [168,0 K], добавлен 26.03.2013

  • Расчетные характеристики топлива. Расчёт объема воздуха и продуктов сгорания, КПД, топочной камеры, фестона, пароперегревателя I и II ступеней, экономайзера, воздухоподогревателя. Тепловой баланс котельного агрегата. Расчёт энтальпий по газоходам.

    курсовая работа [1,9 M], добавлен 27.01.2016

  • Определение присосов воздуха и коэффициентов избытка воздуха по отдельным газоходам. Тепловой баланса котла. Метод расчета суммарного теплообмена в топке с пневмомеханическим забрасывателем и цепной решеткой обратного хода. Расчет топочной камеры.

    курсовая работа [203,9 K], добавлен 18.01.2015

  • Принципиальное устройство парового котла ДЕ-6,5-14ГМ, предназначенного для выработки насыщенного пара. Расчет процесса горения. Расчет теплового баланса котельного агрегата. Расчет топочной камеры, конвективных поверхностей нагрева, водяного экономайзера.

    курсовая работа [192,0 K], добавлен 12.05.2010

  • Выбор расчетных температур и способа шлакоудаления. Расчет энтальпий воздуха, объемов воздуха и продуктов сгорания. Расчет КПД парового котла и потерь в нем. Тепловой расчет поверхностей нагрева и топочной камеры. Определение неувязки котлоагрегата.

    курсовая работа [392,1 K], добавлен 13.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.