Выбор российских паровых турбин для работы в составе газопаровых установок во Вьетнаме. Влияние КПД цилиндра высокого давления паровой турбины К-300-240-2 на мощность ГПУ во Вьетнаме

Состояние энергетики Вьетнама и выбор новых российских паровых турбин для работы в составе его газопаровых установок. Влияние полезного действия российской паровой турбины К-300-240-2 на мощность за счет применения сотовых уплотнений в проточных частях.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 19.05.2017
Размер файла 509,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

????????? ?? http://www.allbest.ru/

????????? ?? http://www.allbest.ru/

Выбор российских паровых турбин для работы в составе газопаровых установок во Вьетнаме. Влияние КПД цилиндра высокого давления паровой турбины К-300-240-2 на мощность ГПУ во Вьетнаме

Во Вьетнаме существует необходимость в создании тепловых электростанций традиционных типов, а также внедрении перспективных комбинированных установок, обладающих высоким коэффициентом полезного действия (КПД). Решить задачу повышения выработки электроэнергии можно не только за счет строительства новых электростанций, но и путем модернизации действующих [1]. Модернизация может быть осуществлена за счет создания комбинированных газопаровых установок (ГПУ) на базе имеющихся во Вьетнаме газотурбинных двигателей (ГТД), а также за счет применения газотурбинного комбинированного цикла с российскими паровыми турбинами. Поэтому исследования в этой области являются актуальными для Вьетнама.

В настоящее время во Вьетнаме установлено более десятка комбинированных газопаровых установок. Комбинированные газопаровые установки во Вьетнаме состоят из трех типов: ГПУ с мощностью 450 МВт: 2 ГТ + 1 ПТ; ГПУ с мощностью 750 МВт: 2 ГТ + 1 ПТ; ГПУ с мощностью 1090 МВт: 3 ГТ + 1 ПТ [2].

Краткий обзор российских турбоустановок различных предприятий. Для ГПУ 2х1 с мощностью 450 МВт предлагается использование паровой турбины Т-150-7,7 (ОАО «ЛМЗ»), для ГПУ 2х1 с мощностью 750 МВт предлагается использование паровой турбины К-300-23,5 (ОАО «ЛМЗ») и для ГПУ 3х1 с мощностью 1090 МВт может использоваться паровая турбина К-300-240-2 (ОАО «ЛМЗ») при реконструкции по газопаровому циклу действующих паротурбинных ТЭС во Вьетнаме [3].

Паровая турбина Т-150-7,7: Двухцилиндровая турбина без промежуточного перегрева пара, предназначена для работы в составе газопаровых установок. Цилиндр высокого давления имеет два паровпуска из котлов-утилизаторов высокого и низкого давления. Цилиндр низкого давления - двухпоточный. Турбина Т-150-7,7 - теплофикационная, имеет два регулируемых отбора пара. Регулирование давления осуществляется поворотной диафрагмой в нижнем отборе и регулирующим клапаном - в верхнем. Турбина может использоваться как при строительстве новых электростанций, так и при реконструкции по газопаровому циклу действующих паротурбинных ТЭС [3].

а)

б)

Рис. 1. Продольный разрез паровой турбины:

а - Т-150-7,7; б - К-300-240-2

энергетика паровой турбина мощность

Паровая турбина К-300-23,5: Трёхцилиндровая конденсационная турбина с промежуточным перегревом пара, тремя выхлопами в конденсатор и развитой системой регенеративного подогрева питательной воды. В качестве паротурбинной части блока ГПУ-750 или ГПУ-800 может использоваться паровая турбина К-300-23,5 после перевода ее на пониженные параметры пара, модернизации системы паровпуска, регулирующих ступеней, последних ступеней ЦНД, закрытия патрубков нерегулируемых отборов и т.д. Внутренние относительные КПД частей турбины при этом практически не изменятся [4].

Паровая турбина К-300-240-2: Трёхцилиндровая конденсационная турбина без регулируемых отборов пара, номинальной мощностью 300 МВт с частотой вращения ротора 3000 об/мин, выпускаемая ОАО «ЛМЗ», предназначена для непостредственного привода генератора переменного тока типа ТВВ-320-2 и для работы в блоке с паровым котлом [5].

Таблица 1. Основные технические характеристики

Наименование показателя

Типоразмер турбины

Т-150-7,7

К-300-23,5*

К-300-240-2

Мощность номинальная, МВт

150

300

300

Давление пара на входе в ЦВД, МПа

7,6

16

23,5

Температура пара на входе в ЦВД, ?

510

540

540

Давление в конденсаторе, МПа

0,005

0,004

0,00705

* параметры К-300-23,5 после перевода ее в газопаровый режим

Сравнение результатов расчетов. Для сравнения были выбраны три программных продукта: программа P1GPU, написанная авторам; программа КГПТУ, разработанная Морским университетом (г. Санкт-Петербург); программа GateCycle компании General Electric. Все три программы дают весьма близкие и хорошо совпадающие с опубликованными данными результаты [6,7] для схем ГПУ. Поскольку программа P1GPU не позволяет проектировать ГПУ с тремя уровнями давления в котле-утилизаторе, для дальнейших расчетов была выбрана простая и удобная при использовании программа Морского технического университета [8].

Ниже приведены результаты расчетов показателей тепловой схемы ГПУ 3х1 с мощностью 1090 МВт на базе российской ПТУ К-300-240-2 и на базе штатной ПТУ ТС2А40 Мицубиси (станция ФуМи-1, Вьетнам) в программе Морского университета. Схема ГПУ 3х1 с мощностью 1090 МВт, в которой в качестве ГТУ использована известная установка M701F Мицубиси (MHI Япония), приведена на рис.2, а полученные в расчете данные сведены в табл.2.

Рис. 2. Тепловая схема энергетической ГПУ 3х1 с мощностью 1090 МВт

Таблица 2. Результаты расчетов тепловой схемы ГПУ 3х1 с мощностью 1090 МВт

Газовая часть: ГТУ M701F (Япония)

Мощность ГТД, МВт

241,92

Расход газов, кг/с

714,4

Температура газа за турбиной, ?С

549

КПД ГТД,%

38,2

Степень повышения давления воздуха в компрессоре

17

Коэффициент избытка воздуха

2,65

Паровая часть

К-330-240-2

Россия

ТС2А40

Япония

КПД части высокого давления,%

78

-

КПД части среднего давления,%

85

-

КПД части низкого давления,%

84

-

Давление в конденсаторе, МПа

Давление в деаэраторе, МПа

0,00705

0,1

-

-

Параметры пара за высокими контурами:

- давление, МПа

- температура, ?С

- расход, кг/с

22

509

197,3

15

538

-

Параметры пара за средними контурами:

- давление, МПа

- температура, ?С

- расход, кг/с

3,82

259

35,1

4,5

-

-

Параметры пара за низкими контурами:

- давление, МПа

- температура, ?С

- расход, кг/с

0,248

224,4

107,8

0,899

280

-

Мощность ПТ, МВт

316,3

360

Мощность ГПУ, МВт

КПД ГПУ,%

1033,7

54,408

1090*

54,4*

* параметры реальной установки (станция ФуМи-1, Вьетнам)

Как следует из сравнения полученных данных, для совершенствования и модернизации комбинированных газопаровых установок во Вьетнаме предлагается использование новых российских паровых турбин: Т-150-7,7; К-300-23,5 и К-300-240-2.

Влияние КПД цилиндра высокого давления (ЦВД) российской паровой турбины К-300-240-2 на КПД и мощность ГПУ 3х1 (мощность порядка 1090 МВт).

Таблица 3. Влияние КПД ЦВД паровой турбины К-300-240-2 на КПД и мощность ГПУ 3х1 (станция ФуМи-1, Вьетнам)

КПД ЦВД,%

Мощность ГПУ, МВт

КПД ГПУ,%

78(ном.)

1033,7

54,408

80

1034,6

54,45

84

1036,3

54,55

86

1037,2

54,59

90

1038,9

54,68

94

1040,6

54,77

96

1041,4

54,81

99

1042,7

54,88

На рис.3 и рис.4 видно, что с повышением КПД цилиндра высокого давления паровой турбины показатели установки резко возрастают. Так, повышение КПД ЦВД приводит к значительному росту КПД и мощности ГПУ, которые при достигают и .

Рис. 3. Влияние КПД ЦВД паровой турбины К-300-240-2 на мощность ГПУ

Рис. 4. Влияние КПД ЦВД паровой турбины К-300-240-2 на КПД ГПУ

Повышение КПД цилиндра высокого давления паровой турбины за счет применения сотовых надбандажных уплотнений. Сотовые уплотнения - это усовершенствованный тип уплотнений с использованием сотовой поверхности. Конструктивно соты имеют форму шестигранных ячеек с диаметром вписанной окружности, равной 1,5 мм. Сотоблоки изготавливаются из жаростойкой хромоникелевой фольги толщиной 0,05мм и припаиваются к вставкам, из которых собирается кольцо сотового уплотнения для последующего монтажа в проточную часть турбины.

В проточных частях паровых турбин используются четыре вида уплотнений: надбандажные, концевые, диафрагменные и средние [9].

Рис. 5. Внешний вид сотоблока и вставок сотовых уплотнений

Опыт эксплуатации паровых турбин подтверждает, что применение сотовых надбандажных уплотнений обеспечивает повышение внутреннего относительного КПД цилиндра для различных типов турбин на 0,6-1,7% от нормативного значения [10].

Для определения изменения протечек пара через надбандажные уплотнения используется методика, заключающаяся в определении значений относительного внутреннего КПД цилиндра по результатам опытов на режимах с включенной и отключенной регенерацией до и после реконструкции проточной части. Оценка эффективности реконструкции основывается на исследованном факте, определяющем, что часть высокотемпературных протечек через надбандажные уплотнения при включенной регенерации сбрасывается в соответствующие подогреватели, что приводит к снижению температуры пара после цилиндра, следовательно, рассчитанная величина относительного внутреннего КПД цилиндра будет выше, чем аналогичные значения в опытах с отключенной регенерацией. Таким образом, по разнице температур пара за ЦВД в опытах с включенными и отключенными подогревателями высокого давления (ПВД) можно судить о величине суммарных протечек через надбандажные уплотнения, т.е. об их эффективности.

На риc.6 схематично показаны места установки сотовых уплотнений в проточной части паровой турбины [11].

Рис. 6. Места установки сотовых уплотнений в проточной части паровой турбины

В 2004г. в период капитального ремонта паровых турбин К-300-240 ст.№4 Каширской ГРЭС на 3-12 ст. ЦВД были установлены сотовые надбандажные уплотнения НПП "АРМС". Для оценки эффективности модернизации в 2004-2010г. выполнено 3 этапа сравнительных тепловых испытаний (до, после модернизации и через 6 лет эксплуатации перед выводом в капремонт), основные результаты представлены ниже [10]. 

Рис. 7. Изменение внутреннего относительного КПД ЦВД турбины К-300-240, ст.№4 (I этап испытаний, 2004г.)

Рис. 8. Изменение внутреннего относительного КПД ЦВД турбины К-300-240, ст.№4 (II-III этапы испытаний, 2004-2009г.): 1 - после установки сотовых уплотнений (II этап испытаний); 2 - после шести лет эксплуатации сотовых уплотнений (III этап испытаний)

Анализ результатов I этапа (рис.7) испытаний показал, что расхождение значений относительного внутреннего КПД ЦВД в опытах с включенной и отключенной регенерацией до реконструкции (I этап) составляет от 1,0% до 1,5%, в то время как в опыте после реконструкции (II этап) оно близко к нулю [10].

Анализ результатов III этапа (рис.8) и сравнение с результатами, полученными во II этапе, позволяет сделать вывод о том, что расхождение значений относительного внутреннего КПД ЦВД в опытах с включенными и отключенными ПВД практически отсутствует, из чего можно сделать заключение: за шесть лет эксплуатации не произошло существенного увеличения протечек через надбандажные сотовые уплотнения. Вместе с тем, зафиксировано незначительное снижение КПД ЦВД на 1,5ч2% в абсолютных величинах, причинами которого явились эрозионный износ лопаток регулирующей ступени, а также механические повреждения рабочих и направляющих лопаток в проточной части ЦВД.

Заключение

1. Для совершенствования и модернизация комбинированных газопаровых установок во Вьетнаме предлагается использование новых российских паровых турбин: Т-150-7,7; К-300-23,5 и К-300-240-2.

2. Выполненные расчеты показали значительный рост КПД и мощности комбинированных газопаровых установок при увеличении КПД цилиндра высокого давления паровой турбины.

3. Результаты представленных тепловых испытаний паровых турбин К-300-240 ст.№4 Каширской ГРЭС подтверждают, что применение сотовых надбандажных уплотнений в проточных частях позволяет повысить относительный внутренний КПД ЦВД за счёт снижения перетоков пара в уплотнениях, при этом, в течение межремонтного периода сохраняются стабильными термодинамические характеристики цилиндра.

Список литературы

1. Институт энергетики Вьетнама [Электронный ресурс]. - Режим доступа: http://www.ievn.com.vn

2. Фам А.Х. Состояние и перспективы развития энергетики Вьетнама / А.Х. Фам, А.В. Рассохин, К.Д. Андреев // Научно-технические ведомости СПбГПУ. 2013. - № 1(166). - С. 32-35.

3. Открытое акционерное общество «Силовые машины» (ОАО «СМ»): Паровые турбины [Электронный ресурс]. - Режим доступа: http://www.power-m.ru/products/

4. Мельников Ю.В. Анализ технических решений по вводу ПГУ для замены блоков мощностью 300 МВт / Ю.В. Мельников, А.В. Мошкарин // Теплоэнергетика. 2009. - № 9. - С. 19-30.

5. Фаддеев И.П. Паровая конденсационная турбины К-300-240-2: Методическое пособие для студентов дневного и вечернего отделения / И.П. Фаддеев, В.А. Рассохин. - Л.: Турбиностроение, 1984. - 11 с.

6. Цанев С.В. Газотурбинные и парогазовые установки тепловых электростаций: учебное пособие для вузов / С.В. Цанева, В.Д. Буров, А.Н. Ремезов. - М.: Издательство МЭИ, 2009. - 584 с.

7. Трухний А.Д. Расчет тепловых схем парогазовых установок утилизационного типа: Методическое пособие по курсу «Энергетические установки» / А.Д. Трухний, С.В. Петрунин. - М.: Издательство МЭИ, 2001. - 24 с.

8. Фам А.Х. Расчетный анализ тепловой схемы парогазовой установки для энергетики Вьетнама / А.Х. Фам, А.В. Рассохин, К.Д. Андреев // Научно-технические ведомости СПбПУ. 2014. - № 2(195). - С. 34-40.

9. Научно-производственное предприятие «АРМС»: Основные сведения о сотовых уплотнениях [Электронный ресурс]. - Режим доступа: http://www.armstech.ru/cat/osn_sved_o_sotah/

10. Научно-производственное предприятие «АРМС»: Оценка эффективности внедрения сотовых надбандажных уплотнений [Электронный ресурс]. - Режим доступа: http://www.armstech.ru/cat/jeffektivnosti_vnedrenija_sotovykh_uplotnenijj/

11. Предприятие ООО «Статэнком-энерго»: Повышение эксплуатационной надежности и экономичности паровых турбин [Электронный ресурс]. - Режим доступа: http://se-energo.ru/article/art3.html

Размещено на Allbest.ru


Подобные документы

  • История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.

    реферат [196,1 K], добавлен 30.04.2010

  • История изобретения турбин; реактивный и активный принципы создания усилия на роторе. Рассмотрение действия машины Бранке, построенной в 1629 г. Конструкция паровой турбины Лаваля. Создание Парсонсом реактивной турбины, которая вырабатывает электричество.

    презентация [304,7 K], добавлен 08.04.2014

  • Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.

    презентация [247,7 K], добавлен 23.03.2016

  • Понятие и порядок определения коэффициента полезного действия турбины, оценка влияния параметров пара на данный показатель. Цикл Ренкина с промперегревом. Развертки профилей турбинных решеток. Физические основы потерь в турбине. Треугольники скоростей.

    презентация [8,8 M], добавлен 08.02.2014

  • Расчетная тепловая нагрузка на горячее водоснабжение. Определение расхода пара внешними потребителями. Определение мощности турбины, расхода пара на турбину, выбор типа и числа турбин. Расход пара на подогреватель высокого давления. Выбор паровых котлов.

    курсовая работа [1,3 M], добавлен 26.01.2016

  • Задачи ориентировочного расчета паровой турбины. Определение числа ступеней, их диаметров и распределения тепловых перепадов по ступеням. Вычисление газодинамических характеристик турбины, выбор профиля сопловой лопатки, определение расхода пара.

    курсовая работа [840,0 K], добавлен 11.11.2013

  • Дополнительное преимущество машин высокого давления. Основная сфера применения паровых турбин. Коэффициент полезного действия теплового двигателя. Российский ученый И.И. Ползунов, разработавший детальный проект парового двигателя мощностью в 1,8 л.с.

    реферат [71,2 K], добавлен 24.09.2015

  • Тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу поршня. Повышение мощности двигателей. Использование паровых турбин на лесопилках. Паровая турбина Лаваля. Первое судно с паротурбинным двигателем.

    презентация [2,7 M], добавлен 23.04.2014

  • Расчет тепловых нагрузок на отопление сетевой и подпиточной воды, добавочной воды в ТЭЦ. Загрузка турбин, котлов и составляется баланс пара различных параметров для подтверждения правильности подбора основного оборудования. Выбор паровых турбин.

    курсовая работа [204,3 K], добавлен 21.08.2012

  • Конструкция корпуса атомной турбины. Методы крепления корпуса к фундаментной плите. Материалы для отливки корпусов паровых турбин. Паровая конденсационная турбина типа К-800-130/3000 и ее назначение. Основные технические характеристики турбоустановки.

    реферат [702,3 K], добавлен 24.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.