Nuclei shells and periodic trends. Part 2

Characteristic of the periodic law in the original formulation of Mendeleev. Study of the theory of nuclear interactions. Computation of the binding energy of nucleons. Analysis of parameters describing periodic trends in the formation of nuclear shells.

Рубрика Физика и энергетика
Вид статья
Язык английский
Дата добавления 29.04.2017
Размер файла 397,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

UDC 531.9+539.12.01

Nuclei shells and periodic trends. Part 2

Alexander Trunev

Cand.Phys.-Math.Sci., Ph.D.

Director, A&E Trounev IT Consulting, Toronto, Canada

Abstract

Parameters describing periodic trends in the formation of nuclear shells have been established based on the theory of nuclear interactions and data on the binding energy of nucleons for the set of known nuclides

Keywords: BINDING ENERGY, PERIODIC TRENDS, PROTON, NEUTRON, NUCLEI

УДК 531.9+539.12.01

ЯДЕРНЫЕ ОБОЛОЧКИ И ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И.МЕНДЕЛЕЕВА. ЧАСТЬ 2.

Трунев Александр Петрович

к.ф.-м.н., Ph.D.

Директор, A&E Trounev IT Consulting, Торонто, Канада

На основе теории ядерных взаимодействий и данных по энергии связи нуклонов для всех известных нуклидов установлены параметры, характеризующие периодические закономерности в формировании ядерных оболочек

Ключевые слова: НЕЙТРОН, ПЕРИОДИЧЕСКИЙ ЗАКОН, ПРОТОН, ЭНЕРГИЯ СВЯЗИ, ЯДРО

Introduction

The periodic law discovered by Mendeleev in 1869, played a huge role in the development of ideas about the structure of matter. In one of the first formulations of this law states that "the properties of simple bodies, as well as the shape and properties of the compounds of the elements, and therefore the properties of which they form simple and complex bodies are in the periodic table according to their atomic weight" [1]. Using this law, Mendeleev created the periodic table of elements, which is predicted on the basis of new elements - gallium, scandium, germanium, astatine, polonium, technetium, rhenium, and francium.

Ivanenko [2-3], evidently, was one of the first who raised the issue of expansion of the periodic law to include the periodic patterns are observed in atomic nuclei and some exotic formations, such as exotic atoms. According to the theory of nuclear shells [4-5], periodic patterns in the nuclei are explained by analogy with the electron shells, the Pauli principle, which is applied separately for protons and neutrons fill the nuclear envelope. With this expansion of the periodic law of its original wording seems quite logical, since the properties of the nuclei depend not only on the number of protons but also on the number of neutrons. Thus, the properties of nuclei and the properties of atoms of chemical elements due to the same type on the basis of quantum mechanics and the Pauli principle.

At present, the binding energy of the nucleon measured with high accuracy for almost all known nuclides. However, in contrast to the ionization energy of the atoms, the dependence of the binding energy of the number of nucleons does not contain any explicit reference to the existence of nuclear shells. However, attempts to establish the presence of known nuclear shells and the so-called magic numbers for the deviation from the standard binding energy trend of the Weiszдcker's semi-empirical model [6] and other models [7]. In the present work we investigated the dependence of the energy of the nucleons for all known nuclides with the use of Wolfram Mathematica 8 [8] and three models of the binding energy:

1) Semi-empirical model;

2) 5D model of nuclear interactions [9-11];

3) Information model [12].

The parameters of all models were determined locally for the isotopes of each element. Found that in all three cases, model parameters have a similar behavior depending on the number of protons, which indicates the presence of the internal structure of nuclei.

5D model description

You may notice that the periodic law in the original formulation of Mendeleev is local, as relates properties of simple substances with their atomic weight, which at the time when the law was formulated, was determined by weighing in the gravitational field of the earth. Such a correlation properties of substances and their gravitational properties are reasonable. To answer the question about the fundamental causes that lead to a law of periodicity in nature, consider a general model of atomic nuclei and atoms of matter [10-11]. In this model, the properties of matter are determined by the parameters of the metric tensor in 5-dimensional space, which depend on a combination of charge and gravitational properties of the central core in the form [9]

(1)

Here - the gravitational constant, the speed of light and charge of the nucleus, respectively. About the nature of the charge will be assumed that the source is an electric charge, but it can be screened in various natural fields. The mechanisms of screening and related fields are discussed below. In the case of proton and electron parameters of the metric tensor (1) are presented in Table 1.

Table 1: The metric tensor parameters

k, 1/m

rmax, m

rmin, m

e-

1,703163E-28

4,799488E-43

5,87E+27

2,81799E-15

p+

1,054395E-18

1,618178E-36

9,48E+17

1,5347E-18

Note that the maximum scale in the case of an electron exceeds the size of the observable universe, while for protons this scale is about 100 light-years. The minimum is the scale corresponds to the classical radius of a charged particle, which in the case of a proton and an electron is commensurate with the scale and the weak nuclear interactions.

It is easy to see that the second parameter of the model (1) directly included in the formula for the Mendeleev's periodic law [1]. Combining the parameters, we find the nuclear charge in the form:

.

Consequently, the periodic law in its present formulation can also be expressed through the parameters of the metric tensor (1). The metric tensor can be expanded in the vicinity of a massive center of gravity in five-dimensional space in powers of the dimensionless distance to the source, , here

.

Consider the form of the metric tensor, which arises when holding the first three terms in the expansion of the metric in the case of central force field with the gravitational potential in the Newton's form. This choice of metric is justified, primarily because of the specified building the superposition principle holds. Suppose, in this notation we have for the square of the interval in the 4-dimensional space:

(2)

Assuming that we arrive at the expression of the interval depending on the parameters of the metric in the five-dimensional space:

(3)

Further, we note that in this case the metric tensor in four dimensions is diagonal with components

(4)

We define the vector potential of the source associated with the center of gravity in the form

(5)

Here is a vector in three dimensional spaces, which we define below. Hence, we find the scalar and vector potential of electromagnetic field

(6)

To describe the motion of matter in the light of its wave properties, we assume that the standard Hamilton-Jacobi equation in the relativistic mechanics and the Klein-Gordon equation in quantum mechanics arise as a consequence of the wave equation in five-dimensional space [9]. This equation can generally be written as:

(7)

Here - the wave function describing, according to (7), the scalar field in five-dimensional space; - the contravariant metric tensor,

(8)

.

We further note that in the investigated metrics, depending only on the radial coordinate, is true the following relation

(9)

Taking into account the expressions (8) and (9), we write the wave equation (7) as

(10)

Note that the last term in equation (10) is of the order . Consequently, this term can be dropped in the problems, the characteristic scale which is considerably less than the maximum scale in Table 1. Equation (10) is remarkable in that it does not contain any parameters that characterize the scalar field. The field acquires a mass and charge, not only electric, but also strong in the process of interaction with the central body, which is due only to the metric of 5-dimensional space [9-11].

Consider the problem of the motion of matter around the charged center of gravity, which has an electrical charge and strong, for example, around the proton. In the process of solving this problem is necessary to define the inertial mass of matter and energy ties. Since equation (10) is linear and homogeneous, this problem can be solved in general.

We introduce a polar coordinate system with the z axis is directed along the vector potential (8), we put in equation (10)

(11)

Separating the variables, we find that the radial distribution of matter is described by the following equation (here we dropped, because of its smallness, the last term in equation (10)):

(12)

Consider the solutions (12) in the case when one can neglect the influence of gravity, i.e. but . Under these conditions, equation (16) reduces to

(13)

In general, the solution of equation (13) can be represented in the form of a power series [10-11]

(14)

It is indicated . Substituting (14) in equation (13), we find

(15)

, .

Hence, equating coefficients of like powers, we obtain the equations relating the parameters of the model in the case of excited states

(16)

The second equation (16) holds only for values ??of the exponent, for which the inequality is true. Hence, we find an equation for determining the energy levels

(17)

Equation (17) was used to model the binding energy of nucleons in the nucleus for the entire set of known nuclides [10-11]. In the model [10-11], the core consists of "pure" proton interacting with a scalar field. Part of the "pure" proton is screened by forming N neutrons, as a result there is an atom, consisting of the electron shell and nucleus with electric charge eZ, number of nucleons , mass excess , and the binding energy

Note that we using the standard expression of the mass excess in atomic units. Since two types of charges - scalar and vector, appear in this problem the effect of screening manifests itself not only with respect to the scalar charge (which leads to the formation of neutrons), but also in terms of the vector of the charge, which leads to the formation of the nucleons.

It should be noted that the original metric in the five-dimensional space defined by the metric tensor, which depends only on the parameters of the central body, i.e. of the total charge and total mass of the nucleons. Different shells can be formed depending on the combination of the charge and mass of the nucleus:

1) Nucleon shell, in which all charges are screened, therefore;

2) Neutron shell, in which we have ;

3) Proton shell, in which.

Using the electron mass and Planck's constant, we define the dimensionless parameters of the model in the form

(18)

Here in the case of the nucleon, neutron and proton shells, respectively. Solving equation (17) with respect to energy, we find

(19)

Note that the parameter in the energy equation (19) can be both real and complex values, which correspond to states with finite lifetime. Given that for most nuclides the decay time is large enough quantity; it can be assumed that the imaginary part of the right-hand side of equation (19) is a small value, which corresponds to a small value of the radicand. Hence we find that for these states the following relation between the parameters

(20)

Substituting in the momentum equation (19), we have

(21)

Hence, we find the dependence of the binding energy per nucleon in the ground state

(22)

It is indicated . Thus, we have established a link the energy of the state parameters with the interaction parameter. Note that the energy of ground state (22) depends on the magnitude of the vector charge, which appears in equations (5) - (6). In [11] have shown that this shows the difference between the interaction of nucleons in nuclei, where the parameter , and the interaction between electrons and atomic nuclei, in which.

Equation (22) allows us to describe the dependence of the binding energy of the number of nucleons for all nuclides. The computational model is constructed as follows. Suppose that, based on equation (22) was able to accurately determine the binding energy of one of the isotopes of an element. Without loss of generality we can assume that this is isotope, which contains the minimum number of neutrons. Then the binding energy of all other isotopes of element is defined by

(23)

Model (23) contains the arbitrary choice of the interaction parameter. Further, without loss of generality we assume that , therefore a momentum scale in the fifth dimension appearing in equations (11) - (17) is established.

Computation of the binding energy of nucleons

We consider three models of the binding energy of nucleons. Standard Weiszдcker semi-empirical model has the form [13]:

(24)

The first term on the right side of (24) describes the increase in binding energy due to the increase in the volume of the system, the second term is due to the contribution of surface energy, the third term describes the contribution of the electric charge of protons, the fourth term due to the contribution of the Fermi energy of nucleons, and finally, the fifth term describes the pairing energy. Since the model (24) depends on five parameters, and model (23), only three, we fix two parameters in equation (24). First, we assume that is consistent with the known data [6]. Second, we assume that due to the specifics of the problem, in which the model parameters are defined locally for a given value of the nuclear charge, and in this case there is no sufficient data to determine this parameter. Consequently, it is necessary to determine the three parameters of the model, depending on the number of protons Z.

5D model of the binding energy (23) depends on three parameters. For a given number of protons can be represented as

(25)

The problem is to find the values ??of model parameters (25) , depending on the number of protons Z.

The information model is based on the binding energy changes in terms of energy of a thermodynamic system

We can assume that in the case of core contributions of pressure and volume is described by the first term on the right side of equation (24), and entropy of the system varies with the number of neutrons, like the entropy of a discrete set [12], thus

(26)

Note that in the system Mathematica 8 [8] has built a database of isotopes IsotopeData [], and the procedure for finding the parameters of linear and nonlinear models - Fit, FindFit, NonlinearModelFit. The coefficients of the three models (24) - (26) were calculated in the system [8] for the isotopes of chemical elements (Appendix B shows an example for the model (24)). Model (25) is rigid, so in the calculation of its parameters is introduced numerical coefficient k, which provides the convergence of the solution (see example below in Appendix section). Model (26) can be used without change, but in some cases, a sign in front of the logarithm should be replaced with the opposite sign on the initial iteration. Three models can be compared with experimental data (the corresponding code shows in the Appendix). Results comparing the three models are shown in Figure 1 for isotopes of O, F, Fe, Ni, Pt, Au curves of different colors - green, red and blue for models (24), (25), (26), respectively. nuclear interaction periodic law

Parameters of the three models, calculated for the number of protons from 4 to 94 are summarized in Table 2.

Figure 1: Comparison of three models for the isotopes O, F, Fe, Ni, Pt, Au: the green lines - Weiszдcker's model (24), red lines - 5D model (25), blue lines - an information model.

Table 2: The calculated parameters of models (24) (25) and (26).

Z

a

b

g

a1

b1

g1

av

ac

aA

4

-3.62481

27.327

0.0422609

-20.4234

51.3442

0.355978

14.7091

-0.449354

15.4203

5

-2.52089

23.6371

0.0247448

-14.204

39.0915

0.361751

13.8749

-0.548336

12.7719

6

-2.68681

25.3876

0.0165681

-19.5433

50.4696

0.366144

14.4986

-0.1836

14.5216

7

-3.85908

28.2342

0.0114133

-26.5208

63.2546

0.378508

14.8815

0.262532

16.6353

8

-3.79443

28.7792

0.0086387

-29.0956

68.485

0.382158

15.1319

0.377706

17.331

9

-4.02073

29.1897

0.0067492

-31.347

72.4102

0.38568

15.0451

0.461668

17.8339

10

-3.90832

29.5351

0.0055812

-32.327

74.7037

0.384548

15.066

0.447392

18.1195

11

-4.34471

30.6186

0.0045588

-34.9852

79.4571

0.387794

15.1316

0.538501

18.9135

12

-4.75363

32.0398

0.0037947

-34.9742

79.891

0.386432

15.2473

0.556375

19.3312

13

-4.49257

31.4826

0.0032596

-34.4678

78.9237

0.387226

15.0955

0.520236

19.0377

14

-4.86299

32.9161

0.0028544

-33.7932

78.1938

0.38417

15.1093

0.489994

19.3225

15

-4.92823

32.9845

0.0024462

-34.6704

79.514

0.38844

15.1402

0.532441

19.4656

16

-4.57793

32.2025

0.0021184

-34.6231

79.3658

0.391189

15.1662

0.53731

19.208

17

-4.4887

31.7784

0.0018284

-34.6721

79.0368

0.396352

15.1746

0.568718

19.024

18

-4.20688

31.1873

0.0016155

-34.0293

77.7887

0.398887

15.1715

0.559632

18.6967

19

-4.56505

32.023

0.0014452

-35.2885

79.9604

0.400381

15.1961

0.58579

19.1674

20

-4.64648

32.4197

0.0013115

-35.6665

80.765

0.400448

15.2171

0.580203

19.3655

21

-5.26814

33.8858

0.00119

-38.196

85.348

0.400375

15.2774

0.617602

20.2984

22

-5.67551

35.0752

0.0010958

-40.1961

89.2201

0.398872

15.3419

0.628125

21.0693

23

-6.05237

35.9337

0.0009984

-41.5921

91.6283

0.400196

15.3843

0.651503

21.5696

24

-6.11985

36.2127

0.0009177

-41.99

92.3902

0.400701

15.4094

0.648387

21.7216

25

-6.24784

36.4664

0.0008418

-42.4793

93.1508

0.401959

15.4076

0.653399

21.8633

26

-6.28165

36.6336

0.0007779

-41.7491

91.9181

0.401584

15.3744

0.633746

21.7385

27

-5.91711

35.5786

0.0007103

-40.9674

90.2611

0.403841

15.3089

0.622372

21.2347

28

-5.78781

35.2243

0.0006501

-39.7398

87.903

0.405936

15.3041

0.614025

20.8196

29

-4.99568

33.1639

0.0006016

-39.4301

87.1016

0.408116

15.1827

0.590204

20.1834

30

-4.57451

32.0833

0.0005569

-38.1885

84.7455

0.409463

15.0929

0.566158

19.6017

31

-4.63175

32.0402

0.0005134

-38.5366

85.1258

0.411775

15.099

0.577839

19.6222

32

-4.63363

32.0235

0.0004795

-38.6924

85.3594

0.412437

15.0928

0.575169

19.6399

33

-4.89913

32.5176

0.0004462

-39.7378

87.0587

0.413959

15.1314

0.593458

19.9647

34

-4.92286

32.5903

0.0004204

-42.1626

91.2954

0.415514

15.2229

0.61443

20.4833

35

-5.32932

33.4376

0.0003932

-43.7459

93.9747

0.416771

15.2993

0.639397

21.0178

36

-5.73261

34.4072

0.0003708

-45.5038

97.1115

0.417121

15.4002

0.659816

21.6395

37

-6.02828

35.0052

0.0003487

-46.3959

98.5568

0.418232

15.4387

0.673052

21.9657

38

-6.30199

35.6495

0.0003294

-47.6848

100.826

0.418783

15.5158

0.686486

22.3972

39

-5.99714

34.8385

0.0003117

-47.4196

100.218

0.419675

15.4344

0.670048

22.0897

40

-5.80949

34.4269

0.0002976

-46.5407

98.6955

0.419209

15.3424

0.644418

21.7953

41

-5.29964

33.138

0.0002831

-45.367

96.4927

0.41975

15.1905

0.61341

21.1702

42

-5.18736

32.8917

0.0002706

-44.7795

95.4757

0.419392

15.1213

0.594908

20.9812

43

-4.72927

31.7071

0.0002573

-43.0526

92.2911

0.419885

14.9618

0.56367

20.276

44

-4.68112

31.5894

0.0002456

-42.7163

91.6774

0.420027

14.925

0.553454

20.1688

45

-4.30091

30.5779

0.0002333

-40.9962

88.4722

0.420954

14.787

0.528102

19.5122

46

-3.98847

29.8081

0.0002226

-39.6453

86.0108

0.421472

14.688

0.506142

19.0082

47

-3.01173

27.3123

0.0002095

-36.5769

80.3064

0.423684

14.4568

0.463584

17.6412

48

-2.82675

26.8101

0.0001988

-35.6621

78.5572

0.425169

14.4103

0.454071

17.2941

49

-2.64241

26.2272

0.0001878

-34.8193

76.8483

0.427347

14.3553

0.447902

16.9268

50

-2.75243

26.3929

0.0001774

-35.0131

77.0089

0.429706

14.4058

0.458403

16.982

51

-3.10147

27.0323

0.0001675

-36.9114

80.0647

0.432777

14.5294

0.489927

17.5059

52

-4.1087

29.2927

0.0001595

-40.8443

86.8587

0.434208

14.8168

0.548111

18.9091

53

-4.88685

30.9368

0.0001512

-44.1034

92.3213

0.436673

15.0542

0.599221

19.986

54

-5.77758

32.9822

0.0001456

-47.6512

98.5393

0.436678

15.2876

0.642985

21.2657

55

-6.49219

34.5295

0.0001395

-50.793

103.932

0.437431

15.4808

0.68223

22.3091

56

-6.55646

34.6463

0.0001344

-50.8494

103.993

0.437599

15.4654

0.677452

22.3435

57

-6.71471

34.8831

0.0001287

-51.7677

105.403

0.439024

15.5096

0.688154

22.5647

58

-6.77462

34.9917

0.0001243

-51.8113

105.447

0.43912

15.4913

0.682866

22.5949

59

-6.61779

34.5162

0.0001194

-50.9097

103.723

0.439992

15.4053

0.669129

22.2552

60

-6.64243

34.5196

0.0001151

-51.3111

104.33

0.440713

15.414

0.669337

22.3221

61

-6.5384

34.155

0.0001105

-50.6191

102.949

0.441853

15.3515

0.660245

22.0511

62

-6.571

34.1944

0.0001069

-50.5155

102.727

0.442029

15.3256

0.654196

22.0297

63

-6.54571

34.0061

0.0001026

-50.1268

101.863

0.44335

15.2915

0.650338

21.8645

64

-6.60085

34.0906

9.923E-05

-51.0797

103.449

0.443885

15.3239

0.654754

22.0742

65

-6.50471

33.7317

9.524E-05

-50.3913

102.047

0.445361

15.272

0.647954

21.799

66

-6.38636

33.4135

9.218E-05

-49.6857

100.758

0.445726

15.2046

0.635322

21.5537

67

-6.25463

32.9776

8.857E-05

-48.8482

99.1038

0.447197

15.1396

0.626537

21.2265

68

-5.86922

32.0605

8.596E-05

-47.5027

96.7233

0.447365

15.0027

0.602623

20.6984

69

-5.54572

31.1761

8.249E-05

-45.8781

93.681

0.449166

14.8826

0.585267

20.0847

70

-5.1355

30.2033

8.013E-05

-44.3569

91.0016

0.449317

14.7324

0.560059

19.5073

71

-5.13124

30.0637

7.707E-05

-44.2486

90.6327

0.450782

14.7158

0.559955

19.4139

72

-5.1398

30.0561

7.505E-05

-44.8237

91.6306

0.45047

14.7088

0.558424

19.5368

73

-5.08636

29.7848

7.199E-05

-44.3017

90.492

0.452533

14.6794

0.556499

19.3111

74

-5.15849

29.8641

6.949E-05

-44.7317

91.095

0.4538

14.7085

0.56144

19.3941

75

-5.18135

29.7528

6.652E-05

-44.5443

90.5021

0.456279

14.7143

0.56513

19.2703

76

-4.81392

28.8112

6.396E-05

-42.837

87.3653

0.458217

14.5937

0.546876

18.628

77

-4.739

28.4772

6.119E-05

-42.4773

86.4801

0.46079

14.5782

0.547303

18.4114

78

-4.3432

27.458

5.861E-05

-40.8502

83.4595

0.463247

14.4649

0.530748

17.7622

79

-4.11711

26.7572

5.566E-05

-40.1393

81.9009

0.46695

14.4327

0.528879

17.367

80

-5.44848

29.7541

5.483E-05

-45.8294

91.7441

0.465145

14.85

0.591188

19.3432

81

-6.3089

31.5529

5.29E-05

-50.0175

98.6963

0.466802

15.1852

0.643356

20.6374

82

-7.35854

33.897

5.192E-05

-54.2297

105.945

0.465925

15.4981

0.688685

22.1181

83

-10.6838

41.2669

5.081E-05

-69.5929

132.156

0.465622

16.6923

0.86676

27.1828

84

-12.0013

44.1892

4.977E-05

-75.7497

142.678

0.465302

17.1429

0.930859

29.2048

85

-14.341

49.3045

4.842E-05

-87.2432

162.142

0.465986

18.0281

1.06011

32.8569

86

-13.1541

46.6637

4.754E-05

-57.8229

112.377

0.461763

17.588

0.991697

31.3175

87

-12.0067

44.0411

4.647E-05

-10.9011

33.4322

0.416778

17.1993

0.933971

29.8626

88

-10.7392

41.227

4.573E-05

-33.0918

70.7649

0.449922

16.6866

0.857065

28.0244

89

-9.3985

38.2087

4.493E-05

-0.240897

15.592

0.333918

16.162

0.781219

26.1047

90

-7.66393

34.3582

4.437E-05

1.39374

12.7593

0.305706

15.468

0.680812

23.5375

91

-6.60717

31.912

4.33E-05

1.25935

12.7706

0.319387

15.048

0.622713

21.8927

92

-5.29195

28.9599

4.261E-05

4.6173

7.29986

0.171406

14.5418

0.55151

19.9757

93

-10.3571

39.5927

3.857E-05

5.70092

5.94733

0.0177703

16.745

0.867284

27.4873

94

-10.6928

40.2478

3.754E-05

6.13997

5.31963

-0.0623392

16.8843

0.884977

27.9953

The Appendix provides the text of programs to calculate and plot the model parameters on the number of protons - Fig. 2-4. The parameters of all three models vary with the number of protons. Since the 5D model is rigid, it uses the above-introduced coefficient k, which provides the convergence of solutions depending on the number of protons in the form . Shown in Fig. 3 parameter g is calculated with respect to this factor.

Analyzing the data given in Table 2 and Fig. 2-4, we can conclude that there is no universal model that describes the entire set of nuclides. From the data presented in Fig. 1, it follows that all three models describe equally well the binding energy of the isotopes of individual elements. In this sense, the model of Weiszдcker cannot be regarded as a universal model, even with the term describing the pairing energy.

Figure2: The dependence of Weiszдcker model parameters on the number of protons, the lower figures show the value of standard deviation RSquared and maximum absolute prediction error of the binding energy - MaxError.

Note the similarity in the behavior of parameters of three models: the parameters reach extreme values ??at the same or similar values ??of Z - Table 3. These results indicate the presence of nuclear structure, but the point of extremes do not coincide with the magic numbers of protons - 2, 8, 20, 28, 50, 82, as defined in the standard nuclear shell model [3-6]. A similar result was obtained in [11], in which the local parameters 5D model depending on the number of neutrons have been calculated. As it turned out, the number of neutrons corresponding to the extreme values ??of the parameters of the model 5D, close to the magic numbers, but nowhere with them do not match.

Figure 3: The dependence of the parameters of the 5D model on the number of protons.

In this regard, we note in Table 3 and Fig. 2-4 three points that fall on the elements Z = 31,32,85 - Ga (Gallium), Ge (germanium), At (astatine). Gallium and germanium were predicted by Mendeleev in 1870 and discovered in 1875 and 1885, respectively. Astatine predicted by Mendeleev was artificially synthesized only in 1940. Note three extreme coinciding with the Z = 26, 79, 92 - Fe (iron), Au (gold) and U (uranium). There is no doubt that the iron is clearly identified in nature and has long been used in human practice. The role of gold and uranium in human history cannot be overestimated. It is also interesting that only in the 5D model, the binding energy of one of the extremes have the element with proton number Z = 26 - iron.

Figure 4: The dependence of the parameters of the information model on the number of protons.

Table 3: Extreme valuesof the model parameters

Z

a

b

a1

b1

av

aA

5

-2.52089

23.6371

-14.204

39.0915

13.8749

12.7719

18

-4.20688

31.1873

-34.0293

77.7887

15.1715

18.6967

25

-42.4793

93.1508

15.4076

21.8633

26

-6.28165

36.6336

31

-4.63175

-38.5366

85.1258

19.6222

32

32.0235

15.0928

38

-6.30199

35.6495

-47.6848

100.826

15.5158

22.3972

49

-2.64241

26.2272

-34.8193

76.8483

14.3553

16.9268

58

-6.77462

34.9917

-51.8113

105.447

15.4913

22.5949

79

-4.11711

26.7572

-40.1393

81.9009

14.4327

17.367

85

-14.341

49.3045

-87.2432

162.142

18.0281

32.8569

92

-5.29195

28.9599

4.6173

7.29986

14.5418

19.9757

We can assume that there is a version of the periodic table, in which periods are associated with the trend shown in Fig. 2-4 and in Table 2. These results suggest that the periodic properties of the nuclei of atomic elements depend on the number of protons (charge), in line with the modern formulation of the periodic law [14]. It has been previously established [11] that the periodic properties of nuclei depend on the number of neutrons, which is reflected in the original formulation of Mendeleev's periodic law. The Appendix gives the texts of programs to calculate the model parameters depending on the number of neutrons - Fig. 5-6.

Figure 5: The dependence of Weiszдcker model parameters on the number of neutrons, the lower figures show the value of standard deviation and maximum absolute prediction error of the binding energy.

Model (24) used in this case without change and 5D model takes the form

(27)

Since the 5D model is rigid, it uses a numerical coefficient k, which provides the convergence of solutions depending on the number of neutrons in the form .

Figure 6: The dependence of the parameters of the 5D model on the number of neutrons.

The data presented in Fig. 5 that the Weiszдcker model parameters depend on the number of neutrons, and these dependencies are not monotonic, which indicates the presence of nuclear structure. Thus, we have shown that the binding energy of all known nuclides can be described approximately with the same accuracy by any of three models (24)-(26). This means that the nucleus can be regarded as a charged liquid drop (Weiszдcker model), and as a set of shielded "clean" protons in the five-dimensional space [10-11], and as a statistical (information) system [12].

Note that the droplet model of the nucleus had a large development in the 30-50s of last century. On the other hand, 5D model is theoretically justified by Kaluza [15], Einstein [16-19], Pauli and Einstein [20], Rumer [21], Dzhunushaliev [22], and in our papers [9-11] as well. The information model of the nucleus also has a great potential in terms of its expansion, taking into account the spin angular momentum and other quantum numbers, as well as quantum chaos [6-7, 23-24].

The author expresses his gratitude to Professor VD Dzhunushaliev and Professor EV Lutsenko for useful discussions.

References

Менделеев Д. И., Периодический закон. Основные статьи. -- М.: Изд-во АН СССР, 1958, с. 111.

Iwanenko, D.D. The neutron hypothesis// Nature, 129, 1932, 798.

Иваненко Д.Д., Периодическая система химических элементов и атомное ядро // Д.И.Менделеев. Жизнь и труды, АН СССР, М., 1957, с.66-100.

Гейзенберг В. Замечания к теории атомного ядра// УФН (1), 1936.

Maria Goeppert-Mayer. On Closed Shells in Nuclei/ DOE Technical Report, Phys. Rev. Vol. 74; 1948. II DOE Technical Report, Phys. Rev. Vol. 75; 1949

P. Leboeuf. Regularity and chaos in the nuclear masses/ Lect. Notes Phys. 652, Springer, Berlin Heidelberg 2005, p.245, J. M. Arias and M. Lozano (Eds.).

Jorge G. Hirsch, Alejandro Frank, Jose Barea, Piet Van Isacker, Victor Velazquez. Bounds on the presence of quantum chaos in nuclear masses//Eur. Phys. J. A 25S1 (2005) 75-78

Wolfram Mathematica 8// http://www.wolfram.com/mathematica/

Трунев А.П. Фундаментальные взаимодействия в теории Калуцы-Клейна// Научный журнал КубГАУ. - Краснодар: КубГАУ, 2011. - №07(71). С. 502 - 527. - Режим доступа: http://ej.kubagro.ru/2011/07/pdf/39.pdf

A. P. Trunev. The structure of atomic nuclei in Kaluza-Klein theory // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №02(76). С. 862 - 881. - Режим доступа: http://ej.kubagro.ru/2012/02/pdf/70.pdf

Трунев А.П. Ядерные оболочки и периодический закон Д.И. Менделеева// Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №05(79). С. 414 - 439. - Режим доступа: http://ej.kubagro.ru/2012/05/pdf/29.pdf

Луценко Е.В. Количественная оценка уровня системности на основе меры информации К. Шеннона (конструирование коэффициента эмерджентности Шеннона) / Е.В. Луценко // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №05(79). С. 249 - 304. - Режим доступа: http://ej.kubagro.ru/2012/05/pdf/18.pdf

Marselo Alonso, Edward J. Finn. Fundamental University Physics. III Quantum and Statistical Physics. - Addison-Wesley Publishing Company, 1975.

A. Van den Broek. The Number of Possible Elements and Mendelйff's “Cubic” Periodic System// Nature 87 (2177), 1911.

Kaluza, Theodor. Zum Unitдtsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 1921: 966-972.

Альберт Эйнштейн. К теории связи гравитации и электричества Калуцы II. (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966)

Альберт Эйнштейн, В. Баргман, П. Бергман. О пятимерном представлении гравитации и электричества (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966 статья 121).

Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966, статья 122.

A. Einstein, P. Bergmann. Generalization of Kaluza's Theory of Electricity// Ann. Math., ser. 2, 1938, 39, 683-701 (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966)

Einstein A., Pau1i W.-- Ann of Phys., 1943, v. 44, p. 131. (см. Альберт Эйнштейн. Собрание научных трудов. Т. 2. - М., Наука, 1966, статья 123).

Ю. Б. Румер. Исследования по 5-оптике. - М., Гостехиздат,1956. 152 с.

V. Dzhunushaliev. Wormhole solutions in 5D Kaluza-Klein theory as string-like objects// arXiv:gr-qc/0405017v1

Vladimir Zelevinsky. Quantum Chaos and nuclear structure// Physica E, 9, 450-455, 2001.

Alexander P. Trunev. Binding energy bifurcation and chaos in atomic nuclei// Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. - Краснодар: КубГАУ, 2012. - №05(79). С. 403 - 413. - Режим доступа: http://ej.kubagro.ru/2012/05/pdf/28.pdf, 0,688 у.п.л.

Appendix

Source code for calculating the Weiszдcker model parameters in Table 2:

Do[ model = av - 17.23*(Z + x)^(-1/3) + ac*(Z*Z)*(Z + x)^(-4/3) + aA*((x - Z)^2)*(Z + x)^(-2);

Eb = Table[IsotopeData[#, prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@ IsotopeData[Z];

nlm = FindFit[Eb, model, {{ av, 15.5}, {ac, -.628528}, {aA, -22.03}}, x]; Print[Z, nlm], {Z, 1, 118}]

Source code for the comparison of three models - Fig. 1:

Z = 78; k = 0.000049;

Eb = Table[IsotopeData[#, prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@ IsotopeData[Z];

nlm = NonlinearModelFit[Eb, a + b*(x*x/(Z*1. + x))*((x^2 + 1)*(1 + k*(g*x)^2))^(-.5) , {a, b, g}, x];

nlm1 = NonlinearModelFit[Eb, av - 17.23*(Z + x)^(-1/3) - ac*(Z*Z)*(Z + x)^(-4/3) - aA*((x - Z)^2)*(Z + x)^(-2) , {av, ac, aA}, x];

nlm2 = NonlinearModelFit[Eb, a2 + b2*(x/(Z*1. + x))*(-Log[x/(Z*1. + x)] + g2) , {a2, b2, g2}, x];

Show[ListPlot[Eb], Plot[{nlm[x], nlm1[x], nlm2[x]}, {x, 1., 180.}, PlotStyle -> {Red, Green, Blue}], Frame -> True,

FrameLabel -> {N, "Eb/A, MeV"}]

Source code for calculating the Weiszдcker model parameters depending on the number of protons (Fig. 2):

par = {0.}; para = {0.}; parc = {0.}; RSq = {1.}; MaxEr = {0.};

Do[ Eb = DeleteCases[Table[IsotopeData[#,prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@

IsotopeData[Z], {_, Missing["Unknown"]}];

nlm = NonlinearModelFit[Eb, av - 17.23*(Z + x)^(-1/3) - ac*(Z*Z)*(Z + x)^(-4/3) - aA*((x - Z)^2)*(Z + x)^(-2) , {av, ac, aA}, x];

RSq = {RSq, nlm["RSquared"]} // Flatten;

MaxEr = {MaxEr, Last[Sort[nlm["MeanPredictionErrors"]]]} // Flatten;

para = {para, av /. nlm["BestFitParameters"]} // Flatten;

parc = {parc, ac /. nlm["BestFitParameters"]} // Flatten;

par = {par, aA /. nlm["BestFitParameters"]} // Flatten, {Z, 2, 112}]

ListPlot[par, Filling -> Axis, AxesLabel -> {Z, aA},

ImageSize -> {200, 200}] ListPlot[para, Filling -> Axis,

AxesLabel -> {Z, av}, ImageSize -> {200, 200}] ListPlot[parc,

Filling -> Axis, AxesLabel -> {Z, ac}, ImageSize -> {200, 200}]

ListPlot[RSq, Filling -> Axis, AxesLabel -> {Z, "RSquared"},

ImageSize -> {300, 300}, DataRange -> Automatic] ListPlot[MaxEr,

Filling -> Axis, AxesLabel -> {Z, "MaxError"},

ImageSize -> {300, 300}, DataRange -> Automatic]

Source code for calculating the Weiszдcker model parameters depending on the number of neutrons (Fig. 5):

par = {.0}; para = {.0}; parc = {.0};

Do[model = av - 17.23*(nn + x)^(-1/3) - ac*(x*x)*(nn + x)^(-4/3) -

aA*((x - nn)^2)*(x + nn)^(-2) ;

Eb = Drop[

Cases[DeleteCases[

Table[{a - z, z, IsotopeData[{z, a}, "BindingEnergy"]}, {z, 1,

118}, {a,

IsotopeData[#, "MassNumber"] & /@ IsotopeData[z]}], {_,

Missing["Unknown"]}] // Flatten[#, 1] &, {nn, _, _}],

None, {1}];

nlm = FindFit[Eb, model, {{ av, 15.5}, {ac, 0.628528}, {aA, 22.03}},

x]; para = {para, av /. nlm} // Flatten;

parc = {parc, ac /. nlm} // Flatten;

par = {par, aA /. nlm} // Flatten, {nn, 2, 175}]

ListPlot[par, Filling -> Axis, AxesLabel -> {N, aA}]

ListPlot[para, Filling -> Axis, AxesLabel -> {N, av}]

ListPlot[parc, Filling -> Axis, AxesLabel -> {N, ac}]

Source code for calculating the dependence of 5D model parameters on the number of protons (Fig. 3):

par = {0.}; para = {0.}; parc = {0.}; RSq = {1.}; MaxEr = {0.};

Do[ Eb = DeleteCases[Table[IsotopeData[#, prop], {prop, {"NeutronNumber", "BindingEnergy"}}] & /@

IsotopeData[Z], {_, Missing["Unknown"]}];

nlm = NonlinearModelFit[Eb, a + b*(x*x/(Z*1. + x))*((x^2 +1)*(1 + (0.9592/Z^2.209)*(g*x)^2))^(-.5), {a, b, g}, x];

para = {para, -a /. nlm["BestFitParameters"]} // Flatten;

RSq = {RSq, nlm["RSquared"]} // Flatten;

MaxEr = {MaxEr, Last[Sort[nlm["MeanPredictionErrors"]]]} // Flatten;

parc = {parc, b /. nlm["BestFitParameters"]} // Flatten;

par = {par, g^2 /. nlm["BestFitParameters"]} // Flatten, {Z, 2, 110}]

ListPlot[par, Filling -> Axis, AxesLabel -> {Z, "g"}, ImageSize -> {200, 200}, PlotRange -> {0.8, 1.2}] ListPlot[para,

Filling -> Axis, AxesLabel -> {Z, "a"}, ImageSize -> {200, 200}] ListPlot[parc, Filling -> Axis,

AxesLabel -> {Z, "b"}, ImageSize -> {200, 200}]

ListPlot[RSq, Filling -> Axis, AxesLabel -> {Z, "RSquared"}, ImageSize -> {200, 200}, DataRange -> Automatic] ListPlot[MaxEr,

Filling -> Axis, AxesLabel -> {Z, "MaxError"},

ImageSize -> {200, 200}, DataRange -> Automatic]

Source code for calculating the dependence of 5D model parameters on the number of neutrons (Fig. 6):

par = {0.};para = {0.};parc = {0.};RSq = {0.};MaxEr = {0.};

Do[ Eb = Drop[ Cases[DeleteCases[

Table[{a - z, z, IsotopeData[{z, a}, "BindingEnergy"]}, {z, 1,118}, {a, IsotopeData[#, "MassNumber"] & /@ IsotopeData[z]}], {_,Missing["Unknown"]}] // Flatten[#, 1] &, {nn, _, _}], None, {1}];

nlm = NonlinearModelFit[Eb, a + b*(x* x/(nn*1. + x))*((x^2 + 1)*(1 + (0.0025 - 0.0003*Log[nn])*(g*x)^2))^(-.5), {a, b, g}, x];

para = {para, -a /. nlm["BestFitParameters"]} // Flatten;

RSq = {RSq, nlm["RSquared"]} // Flatten;

MaxEr = {MaxEr, Last[Sort[nlm["MeanPredictionErrors"]]]} // Flatten;

parc = {parc, b /. nlm["BestFitParameters"]} // Flatten;

par = {par, g /. nlm["BestFitParameters"]} // Flatten, {nn, 2, 102}]

ListPlot[par, Filling -> Axis, AxesLabel -> {N, "g"},

ImageSize -> {200, 200}] ListPlot[para, Filling -> Axis,

AxesLabel -> {N, "a"}, ImageSize -> {200, 200}] ListPlot[parc,

Filling -> Axis, AxesLabel -> {N, "b"}, ImageSize -> {200, 200}]

ListPlot[RSq, Filling -> Axis, AxesLabel -> {N, "RSquared"},

ImageSize -> {200, 200}, DataRange -> Automatic] ListPlot[MaxEr,

Filling -> Axis, AxesLabel -> {N, "MaxError"},

ImageSize -> {200, 200}, DataRange -> Automatic]

Размещено на Allbest.ru


Подобные документы

  • The properties of the proton clusters in inelastic interactions SS. Relativistic nuclear interaction. Studying the properties of baryon clusters in a wide range of energies. Seeing the high kinetic energy of the protons in the rest of the cluster.

    курсовая работа [108,6 K], добавлен 22.06.2015

  • Create a source of light in Earth orbit. Energy source for the artificial sun. Development of light during nucleosynthesis. Using fusion reactors. Application lamp in the center of a parabolic mirror. Application of solar panels and nuclear reactors.

    презентация [2,7 M], добавлен 26.05.2014

  • A cosmological model to explain the origins of matter, energy, space, time the Big Bang theory asserts that the universe began at a certain point in the distant past. Pre-twentieth century ideas of Universe’s origins. Confirmation of the Big Bang theory.

    реферат [37,2 K], добавлен 25.06.2010

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

  • Completing of the equivalent circuit. The permeance of the air-gaps determination. Determination of the steel magnetic potential drops, initial estimate magnetic flux through the air-gap. Results of the computation of electromagnet subcircuit parameters.

    курсовая работа [467,8 K], добавлен 04.09.2012

  • The principles of nonlinear multi-mode coupling. Consider a natural quasi-linear mechanical system with distributed parameters. Parametric approach, the theory of normal forms, according to a method of normal forms. Resonance in multi-frequency systems.

    реферат [234,3 K], добавлен 14.02.2010

  • Reducing the noise and vibrations by using hydraulic absorbers as dampers to dissipate the energy of oscillations in railway electric equipments. The phenomenon of the phase synchronization. Examples of stable and unstable regimes of synchronization.

    статья [153,4 K], добавлен 25.03.2011

  • The photoelectric effect. The maximum kinetic energy. Putting it all together. Can we use this idea in a circuit. The results of the photoelectric effect allowed us to look at light completely different. The electron microscope. Wave-particle duality.

    презентация [2,3 M], добавлен 06.04.2016

  • The danger of cavitation and surface elements spillway structures in vertical spillway. Method of calculation capacity for vortex weirs with different geometry swirling device, the hydraulic resistance and changes in specific energy swirling flow.

    статья [170,4 K], добавлен 22.06.2015

  • The overall architecture of radio frequency identification systems. The working principle of RFID: the reader sends out radio waves of specific frequency energy to the electronic tags, tag receives the radio waves. Benefits of contactless identification.

    курсовая работа [179,1 K], добавлен 05.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.