Элементы цепи синусоидального тока. Векторные диаграммы и комплексные соотношения для них
Идеальный резистивный элемент. Напряжение на конденсаторе. Реактивное емкостное сопротивление конденсатора. Напряжение на катушке индуктивности. Последовательное соединение резистивного и индуктивного элементов, резистивного и емкостного элементов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.03.2017 |
Размер файла | 320,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Элементы цепи синусоидального тока. Векторные диаграммы и комплексные соотношения для них
1. Резистор
Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение (см. рис. 1), то ток i через него будет равен
. (1)
Соотношение (1) показывает, что ток имеет ту же начальную фазу, что и напряжение. Таким образом, если на входе двухлучевого осциллографа подать сигналы u и i, то соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль одновременно, т.е. на резисторе напряжение и ток совпадают по фазе.
Из (1) вытекает:
;
.
Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:
;
,
- разделим первый из них на второй:
или
. (2)
Полученный результат показывает, что отношение двух комплексов есть вещественная константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.
резисторный конденсатор емкостный индуктивный
2. Конденсатор
Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение (см. рис. 4), то ток i через него будет равен
(3)
Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране будет иметь место картинка, соответствующая рис. 5.
Из (3) вытекает:
;
.
Введенный параметр называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление, имеет размерность Ом. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при конденсатор представляет разрыв для тока, а при .
Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:
;
,
- разделим первый из них на второй:
или
. (4)
В последнем соотношении - комплексное сопротивление конденсатора. Умножение на соответствует повороту вектора на угол по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.
3. Катушка индуктивности
Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Пусть протекающий через него ток (см. рис. 8) определяется выражением . Тогда для напряжения на зажимах катушки индуктивности можно записать
(5)
Полученный результат показывает, что напряжение на катушке индуктивности опережает по фазе ток на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране (идеальный индуктивный элемент) будет иметь место картинка, соответствующая рис. 9.
Из (5) вытекает:
Введенный параметр называют реактивным индуктивным сопротивлением катушки; его размерность - Ом. Как и у емкостного элемента этот параметр является функцией частоты. Однако в данном случае эта зависимость имеет линейный характер, что иллюстрирует рис. 10. Из рис. 10 вытекает, что при катушка индуктивности не оказывает сопротивления протекающему через него току, и при .
Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам:
;
,
разделим первый из них на второй:
или
. (6)
В полученном соотношении - комплексное сопротивление катушки индуктивности. Умножение на соответствует повороту вектора на угол против часовой стрелки. Следовательно, уравнению (6) соответствует векторная диаграмма, представленная на рис. 11
4. Последовательное соединение резистивного и индуктивного элементов
Пусть в ветви на рис. 12
Тогда
Где
причем пределы изменения .
Уравнению (7) можно поставить в соответствие соотношение
,
которому, в свою очередь, соответствует векторная диаграмма на рис. 13. Векторы на рис. 13 образуют фигуру, называемую треугольником напряжений. Аналогично выражение
графически может быть представлено треугольником сопротивлений (см. рис. 14), который подобен треугольнику напряжений.
5. Последовательное соединение резистивного и емкостного элементов
Опуская промежуточные выкладки, с использованием соотношений (2) и (4) для ветви на рис. 15 можно записать
, (8)
где
, причем пределы изменения .
На основании уравнения (7) могут быть построены треугольники напряжений (см. рис. 16) и сопротивлений (см. рис. 17), которые являются подобными.
6. Параллельное соединение резистивного и емкостного элементов
Для цепи на рис. 18 имеют место соотношения:
где [См] - активная проводимость;
где [См] - реактивная проводимость конденсатора.
Векторная диаграмма токов для данной цепи, называемая треугольником токов, приведена на рис. 19. Ей соответствует уравнение в комплексной форме
,
где
- комплексная проводимость;
.
Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20.
Для комплексного сопротивления цепи на рис. 18 можно записать
Необходимо отметить, что полученный результат аналогичен известному из курса физики выражению для эквивалентного сопротивления двух параллельно соединенных резисторов.
7. Параллельное соединение резистивного и индуктивного элементов
Для цепи на рис. 21 можно записать
;
где [См] - активная проводимость;
где [См] - реактивная проводимость катушки индуктивности.
Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме
,
где ;
- комплексная проводимость;
.
Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.
Выражение комплексного сопротивления цепи на рис. 21 имеет вид:
.
Литература
1. Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В.Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.
2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.
Размещено на Allbest.ur
Подобные документы
Описание элементов электрической цепи синусоидального тока. Характеристики резистивного элемента. Работа индуктивного элемента. График изменения мощности со временем. Описание емкостного элемента. Анализ графика и выражения для мгновенной мощности.
презентация [449,2 K], добавлен 25.07.2013Обратное преобразование Лапласа и теорема разложения Хевисайда. Операторные схемы замещения элементов: резистивного, индуктивного и емкостного. Законы Кирхгофа для изображений. Построение операторной схемы для цепи с учетом независимых начальных условий.
презентация [187,3 K], добавлен 20.02.2014Параметры синусоидальных токов. Алгебра комплексных чисел и законы цепей в символической форме. Фазовые соотношения между напряжением и током. Векторные и топографические диаграммы, передача мощности от активного двухполюсника в цепи синусоидального тока.
реферат [1,3 M], добавлен 24.11.2010Анализ соотношения между синусоидальными напряжениями и токами при последовательном и параллельном соединении резистивных, индуктивных и емкостных элементов цепи. Оценка параметров последовательной и параллельной схем замещения реальных элементов цепи.
лабораторная работа [137,0 K], добавлен 24.11.2010Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.
лабораторная работа [105,2 K], добавлен 22.11.2010Определение значения тока, протекающего по цепи, состоящей из последовательно соединённых ёмкостей, индуктивности и активного сопротивления. Амплитуда напряжения на конденсаторе и катушке индуктивности при резонансе. Активное сопротивление дросселя.
реферат [137,4 K], добавлен 20.03.2016Переменные электрические величины, их значения в любой момент времени. Изменение синусоидов тока во времени. Элементы R, L и C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Диаграмма изменения мгновенных значений тока.
курсовая работа [403,1 K], добавлен 07.12.2011Расчёт токов и напряжений цепи. Векторные диаграммы токов и напряжений. Расчёт индуктивностей и ёмкостей цепи, её мощностей. Выражения мгновенных значений тока неразветвлённой части цепи со смешанным соединением элементов для входного напряжения.
контрольная работа [376,9 K], добавлен 14.10.2012Ток переходного процесса в ветви с индуктивностью. Переходное напряжение на конденсаторе. Определение свободных составляющих тока через катушку и напряжения на конденсаторе. Составление операторной схемы. Цепи постоянного тока, короткое замыкание.
курсовая работа [200,7 K], добавлен 15.08.2012Элементы R, L, C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Методы расчета электрических цепей. Составление уравнений по законам Кирхгофа. Метод расчёта электрических цепей с использованием принципа суперпозиции.
курсовая работа [604,3 K], добавлен 11.10.2013