Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками

Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией. Составление матричных соотношений при наличии ветвей с идеальными источниками. Запись уравнений без использования матричных соотношений. Матричная форма узловых уравнений Кирхгофа.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 30.03.2017
Размер файла 51,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками

Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией

Как было показано ранее (см. лекцию N 6 ), для схем, не содержащих индуктивно связанные элементы, матрицы сопротивлений и проводимостей ветвей являются диагональными, т.е. все их элементы, за исключением стоящих на главной диагонали, равны нулю.

В общем случае разветвленной цепи со взаимной индукцией матрица сопротивлений ветвей имеет вид

Z .

Здесь элементы главной диагонали , ,… - комплексные сопротивления ветвей схемы; элементы вне главной диагонали - комплексные сопротивления индуктивной связи i- й и k - й ветвей (знак “+” ставится при одинаковой ориентации ветвей относительно одноименных зажимов, в противном случае ставится знак “-”).

Матрица проводимостей ветвей в цепях со взаимной индукцией определяется согласно

Y = Z -1 .

Зная матрицы и Y , можно составить контурные уравнения, а также узловые, т.е. в матричной форме метод узловых потенциалов распространяется на анализ цепей с индуктивно связанными элементами.

Следует отметить, что обычно не все ветви схемы индуктивно связаны между собой. В этом случае с помощью соответствующей нумерации ветвей графа матрице Z целесообразно придать квазидиагональную форму

Z ,

что облегчает ее обращение, поскольку

Y ,

где подматрицы могут быть квадратными диагональными или недиагональными.

В качестве примера составим матрицы Z и Y для схемы на рис. 1,а, граф которой приведен на рис. 1,б.

Для принятой нумерации ветвей матрица сопротивлений ветвей

Z .

В этой матрице можно выделить три подматрицы, обращая которые, получим

Z-111 ;

Z-122 ;

Z-133 .

Таким образом, матрица проводимостей ветвей

Y .

Отметим, что при принятой ориентации ветвей и .

В качестве примера матричного расчета цепей с индуктивными связями запишем контурные уравнения в матричной форме для цепи рис. 2,а.

Решение

1. Для заданной цепи составим граф (см. рис. 2,б), выделив в нем дерево, образованное ветвью 3.

Тогда матрица главных контуров имеет вид

В .

2. Запишем матрицу сопротивлений ветвей с учетом их принятой ориентации

Z .

3. Определим матрицу контурных сопротивлений

Zk=BZBT

4. Запишем столбцовую матрицу контурных ЭДС

.

5. Подставив найденные выражения в , окончательно получим

.

Составление матричных соотношений при наличии ветвей с идеальными источниками

В цепи могут иметь место ветви, содержащие только идеальные источники ЭДС или тока. При записи уравнений без использования матричных соотношений такие ветви не вносят каких-либо особенностей в их составление. Однако, если уравнения записываются по второму закону Кирхгофа в матричной форме или используется матричная форма контурных уравнений, то в матрице сопротивлений ветвей Z ветвям, содержащим идеальные источники тока, будут соответствовать диагональные элементы . Поэтому при наличии таких ветвей исходная схема перед составлением уравнений должна быть подвергнута соответствующему преобразованию, иллюстрируемому рис. 3.

матричный индукция кирхгоф сопротивление

Здесь идеальный источник тока (см. рис. 3,а) включен между узлами k и n. Подключение к узлам l и m по два одинаковых по величине и противоположно направленных источника тока (см. рис. 3,б) не влияет на режим работы цепи, что указывает на эквивалентность замены исходной цепи на рис. 3,а схемой на рис. 3,б.

Может быть другой случай, когда уравнения в матричной форме записываются по первому закону Кирхгофа или используется матричная форма узловых уравнений, а в цепи имеют место ветви, содержащие только идеальные источники ЭДС. Для таких ветвей соответствующие им диагональные элементы матрицы Y будут равны . Поэтому при наличии таких ветвей исходную схему перед составлением уравнений необходимо подвергнуть преобразованию, поясняемому рис. 4.

Здесь участок исходной цепи (см. рис. 4,а) содержит ветвь с идеальным источником ЭДС . Включение в каждую ветвь, соединенную с узлом n, источника с ЭДС, равной , и направлением действия, указанным на рис. 4,б, позволяет (в силу того, что ) трансформировать исходную цепь в схему, представленную на рис. 4,в.

Литература

1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Размещено на Allbest.ru


Подобные документы

  • Метод уравнений Кирхгофа. Баланс мощностей электрической цепи. Сущность метода контурных токов. Каноническая форма записи уравнений контурных токов. Метод узловых напряжений (потенциалов). Матричная форма узловых напряжений. Определение токов ветвей.

    реферат [108,5 K], добавлен 11.11.2010

  • Расчет значения токов ветвей методом уравнений Кирхгофа, токов в исходной схеме по методу контурных токов и узловых напряжений. Составление уравнений и вычисление общей и собственной проводимости узлов. Преобразование заданной схемы в трёхконтурную.

    контрольная работа [254,7 K], добавлен 24.09.2010

  • Первое и второе уравнение Кирхгофа, задача на определение токов цепи. Главные особенности составления баланса мощности. Направление и величина напряжения на источнике тока. Таблица системы основных ветвей, схема. Общий вид системы уравнений Кирхгофа.

    контрольная работа [659,2 K], добавлен 30.06.2012

  • Расчет токов ветвей методом узловых напряжений, каноническая форма уравнений метода, определение коэффициента этой формы. Расчет узловых напряжений, баланса мощностей, выполнения баланса. Схема электрической цепи для расчета напряжения холостого хода.

    контрольная работа [427,5 K], добавлен 19.02.2010

  • Решение линейных уравнений методом Зейделя и итерационными методами. Расчет режимов электрической сети. Определение узловых напряжений сети. Расчет системы узловых напряжений, сопротивления ветвей. Формирование матрицы коэффициентов. Текст программы.

    контрольная работа [121,9 K], добавлен 27.01.2016

  • Составление по данной схеме на основании законов Кирхгофа уравнений, необходимых для определения всех токов. Определение токов всех ветвей методом контурных токов. Расчет потенциалов узлов, построение графика зависимости мощности, выделяемой на резисторе.

    контрольная работа [697,6 K], добавлен 28.11.2010

  • Определение комплексных сопротивлений ветвей цепи, вид уравнений по первому и второму законах Кирхгофа. Сущность методов контурных токов и эквивалентного генератора. Расчет баланса мощностей и построение векторной топографической диаграммы напряжений.

    контрольная работа [1014,4 K], добавлен 10.01.2014

  • Определение токов в ветвях цепи и напряжения на резисторах методами контурных токов и узловых потенциалов. Расчет тока в одной из ветвей методами наложения или эквивалентного источника напряжения. Составление баланса активных и реактивных мощностей.

    контрольная работа [2,1 M], добавлен 06.12.2013

  • Формирование узловых и контурных уравнений установившихся режимов электрической сети. Расчет утяжеленного режима, режима электрической сети по узловым и нелинейным узловым уравнениям при задании нагрузок в мощностях с использованием итерационных методов.

    курсовая работа [872,3 K], добавлен 21.05.2012

  • Применение методов наложения, узловых и контурных уравнений для расчета линейных электрических цепей постоянного тока. Построение потенциальной диаграммы. Определение реактивных сопротивлений и составление баланса мощностей для цепей переменного тока.

    курсовая работа [1,8 M], добавлен 29.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.