Обоснование пониженного температурного графика регулирования централизованных систем теплоснабжения

Проблема снижения проектного температурного графика регулирования систем теплоснабжения в масштабах страны. Пути и перспективы ее разрешения. Расчет режимов работы системы теплоснабжения при температуре прямой сетевой воды, а также определение мощности.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 87,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Обоснование пониженного температурного графика регулирования централизованных систем теплоснабжения

Проблема снижения проектного температурного графика регулирования систем теплоснабжения в масштабах страны

На протяжении последних десятилетий практически во всех городах РФ наблюдается очень значительный разрыв между фактическим и проектным температурными графиками регулирования систем теплоснабжения. Как известно, закрытые и открытые системы централизованного теплоснабжения в городах СССР проектировались при использовании качественного регулирования с температурным графиком регулирования сезонной нагрузки 150-70 С [1]. Такой температурный график широко применялся, как для ТЭЦ, так и для районных котельных. Но, уже начиная с конца 70-х годов, появились существенные отклонения температур сетевой воды в фактических графиках регулирования от их проектных значений при низких температурах наружного воздуха. В расчетных условиях по температуре наружного воздуха температура воды в подающих теплопроводах снизилась со 150 С до 85…115 С. Произведенное понижение температурного графика владельцами тепловых источников обычно официально оформлялось, как работа по проектному графику 150-70С со «срезкой» при пониженной температуре 110…130С. При более низких температурах теплоносителя предполагалась работа системы теплоснабжения по диспетчерскому графику. Расчетные обоснования такого перехода автору статьи не известны.

Переход на пониженный температурный график, например, 110-70 С с проектного графика 150-70 С должен повлечь за собой ряд серьезных последствий, которые диктуются балансовыми энергетическими соотношениями. В связи с уменьшением расчетной разности температур сетевой воды в 2 раза при сохранении тепловой нагрузки отопления, вентиляции необходимо обеспечить увеличение расхода сетевой воды для этих потребителей также в 2 раза. Соответствующие потери давления по сетевой воде в тепловой сети и в теплообменном оборудовании теплоисточника и тепловых пунктов при квадратичном законе сопротивления вырастут в 4 раза. Необходимое увеличение мощности сетевых насосов должно произойти в 8 раз. Очевидно, что ни пропускная способность тепловых сетей, спроектированных на график 150-70 С, ни установленные сетевые насосы не позволят обеспечить доставку теплоносителя до потребителей с удвоенным расходом в сравнении с проектным значением.

В связи с этим совершенно ясно, что для обеспечения температурного графика 110-70 С не на бумаге, а на деле, потребуется радикальная реконструкция как теплоисточников, так и тепловой сети с тепловыми пунктами, затраты на которую непосильны для владельцев систем теплоснабжения.

Запрет на применение для тепловых сетей графиков регулирования отпуска теплоты со «срезкой» по температурам, приведенный в п. 7.11 СНиП 41-02-2003 «Тепловые сети», никак не смог повлиять на повсеместную практику ее применения. В актуализированной редакции этого документа СП 124.13330.2012 режим со «срезкой» по температуре не упоминается вообще, то есть, прямой запрет на такой способ регулирования отсутствует. Это означает, что должны выбираться такие способы регулирования сезонной нагрузки, при которых будет решена главная задача - обеспечение нормированных температур в помещениях и нормированной температуры воды на нужды ГВС.

В утвержденный Перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона от 30.12.2009 №384-ФЗ «Технический регламент о безопасности зданий и сооружений» (Постановление Правительства РФ от 26.12.2014 №1521) вошли редакции СНиП после актуализации. Это означает, что применение «срезки» температур сегодня является вполне законным мероприятием, как с точки зрения Перечня национальных стандартов и сводов правил, так и с точки зрения актуализированной редакции профильного СНиП «Тепловые сети».

Федеральный Закон №190-ФЗ от 27 июля 2010 г. «О теплоснабжении», «Правила и нормы технической эксплуатации жилищного фонда» (утверждены Постановлением Госстроя РФ от 27.09.2003 №170), СО 153-34.20.501-2003 «Правила технической эксплуатации электрических станций и сетей Российской Федерации» также не запрещают регулирование сезонной тепловой нагрузки со «срезкой» по температуре.

В 90-е годы вескими причинами, которыми объясняли радикальное снижение проектного температурного графика, считались изношенность тепловых сетей, арматуры, компенсаторов, а также невозможность обеспечить необходимые параметры на тепловых источниках в связи с состоянием теплообменного оборудования. Несмотря на большие объемы ремонтных работ, проводимых постоянно в тепловых сетях и на тепловых источниках в последние десятилетия, эта причина остается актуальной и сегодня для значительной части практически любой системы теплоснабжения.

Следует отметить, что в технических условиях на присоединение к тепловым сетям большинства тепловых источников до сих приводится проектный температурный график 150-70 С, или близкий к нему. При согласовании проектов центральных и индивидуальных тепловых пунктов непременным требованием владельца тепловой сети является ограничение расхода сетевой воды из подающего теплопровода тепловой сети в течение всего отопительного периода в строгом соответствии с проектным, а не реальным температурным графиком регулирования.

В настоящее время в стране в массовом порядке происходит разработка схем теплоснабжения городов и поселений, в которых также проектные графики регулирования 150-70 С, 130-70 С считаются не только актуальными, но и действительными на 15 лет вперед. При этом отсутствуют пояснения, как обеспечить такие графики на практике, не приводится хоть сколь-нибудь понятное обоснование возможности обеспечения присоединенной тепловой нагрузки при низких температурах наружного воздуха в условиях реального регулирования сезонной тепловой нагрузки.

Такой разрыв между декларируемыми и фактическими температурами теплоносителя тепловой сети является ненормальным и никак не связан с теорией работы систем теплоснабжения, приведенной, например, в [1].

В этих условиях чрезвычайно важным является анализ реального положения с гидравлическим режимом работы тепловых сетей и с микроклиматом отапливаемых помещений при расчетной температуре наружного воздуха. Фактическое положение таково, что, несмотря на значительное понижение температурного графика, при обеспечении проектного расхода сетевой воды в системах теплоснабжения городов, как правило, нет значительного понижения расчетных температур в помещениях, которые бы приводили к резонансным обвинениям владельцев тепловых источников в невыполнении своей главной задачи: обеспечении нормативных температур в помещениях. В связи с этим встают следующие естественные вопросы:

1. Чем объясняется такая совокупность фактов?

2. Можно ли не только объяснить существующее положение дел, но и обосновать, исходя из обеспечения требований современной нормативной документации, либо «срезку» температурного графика при 115С, либо новый температурный график 115-70 (60) С при качественном регулировании сезонной нагрузки?

3. Какие изменения можно рекомендовать в технических условиях на присоединение потребителей разного вида (жилые здания, здания общественного назначения, производственные здания) при понижении температурного графика?

Эта проблема, естественно, постоянно привлекает к себе всеобщее внимание. Поэтому появляются публикации в периодической печати, в которых даются ответы на поставленные вопросы и приводятся рекомендации по ликвидации разрыва между проектными и фактическими параметрами системы регулирования тепловой нагрузки. В отдельных городах уже проведены мероприятия по снижению температурного графика и делается попытка обобщить результаты такого перехода.

С нашей точки зрения, наиболее выпукло и ясно эта проблема обсуждается в статье Гершковича В.Ф. [2].

В ней отмечаются несколько чрезвычайно важных положений, являющихся, в том числе обобщением практических действий по нормализации работы систем теплоснабжения в условиях низкотемпературной «срезки». Отмечается, что практические попытки увеличения расхода в сети с целью приведения его в соответствие с пониженным температурным графиком не привели к успеху. Скорее, они способствовали гидравлической разрегулировке тепловой сети, в результате которой расходы сетевой воды между потребителями перераспределялись непропорционально их тепловым нагрузкам.

В то же время при сохранении проектного расхода в сети и снижении температуры воды в подающей линии даже при низких температурах наружного воздуха в ряде случаев удалось обеспечить на приемлемом уровне температуру воздуха в помещениях. Этот факт автор [2] объясняет тем, что в нагрузке отопления очень значительная часть мощности приходится на нагрев свежего воздуха, обеспечивающего нормативный воздухообмен помещений. Реальный воздухообмен в холодные дни далек от нормативного значения, так как он не может быть обеспечен только открыванием форточек и створок оконных блоков или стеклопакетов. В статье особо подчеркивается, что российские нормы воздухообмена в несколько раз превышают нормы Германии, Финляндии, Швеции, США. Отмечается, что в Киеве снижение температурного графика за счет «срезки» со 150 С до 115 С было реализовано и не имело отрицательных последствий. Аналогичная работа выполнена в тепловых сетях Казани и Минска.

В настоящей статье рассмотрено современное состояние российских требований нормативной документации по воздухообмену помещений. На примере модельных задач с осредненными параметрами системы теплоснабжения определено влияние разных факторов на ее поведение при температуре воды в подающей линии 115 С в расчетных условиях по температуре наружного воздуха, в том числе:

- снижение температуры воздуха в помещениях при сохранении проектного расхода воды в сети;

- повышение расхода воды в сети с целью сохранения температуры воздуха в помещениях;

- снижение мощности системы отопления за счет уменьшения воздухообмена для проектного расхода воды в сети при обеспечении расчетной температуры воздуха в помещениях;

- оценка мощности системы отопления за счет уменьшения воздухообмена для фактически достижимого повышенного расхода воды в сети при обеспечении расчетной температуры воздуха в помещениях.

Исходные данные для анализа

В качестве исходных данных принято, что имеется источник теплоснабжения с доминирующей нагрузкой отопления и вентиляции, двухтрубная тепловая сеть, ЦТП и ИТП, приборы отопления, калориферы, водоразборные краны. Вид системы теплоснабжения не имеет принципиального значения. Предполагается, что проектные параметры всех звеньев системы теплоснабжения обеспечивают нормальную работу системы теплоснабжения, то есть, в помещениях всех потребителей устанавливается расчетная температура tв.р=18 С при соблюдении температурного графика тепловой сети 150-70С, проектном значении расхода сетевой воды, нормативном воздухообмене и качественном регулировании сезонной нагрузки. Расчетная температура наружного воздуха равна средней температуре холодной пятидневки с коэффициентом обеспеченности 0,92 на момент создания системы теплоснабжения. Коэффициент смешения элеваторных узлов определяется общепринятым температурным графиком регулирования систем отопления 95-70 С и равен 2,2.

Следует отметить, что в актуализированной редакции СНиП «Строительная климатология» СП 131.13330.2012 для многих городов произошло повышение расчетной температуры холодной пятидневки на несколько градусов в сравнении с редакцией документа СНиП 23-01-99.

Расчеты режимов работы системы теплоснабжения при температуре прямой сетевой воды 115 С

Рассматривается работа в новых условиях системы теплоснабжения, созданной на протяжении десятков лет по современным для периода строительства нормам. Проектный температурный график качественного регулирования сезонной нагрузки 150-70 С. Считается, что в момент ввода в работу система теплоснабжения выполняла свои функции в точности.

В результате анализа системы уравнений, описывающих процессы во всех звеньях системы теплоснабжения, определяется ее поведение при максимальной температуре воды в подающей линии 115 С при расчетной температуре наружного воздуха, коэффициентах смешения элеваторных узлов 2,2.

Одним из определяющих параметров аналитического исследования является расход сетевой воды на отопление, вентиляцию. Его величина принимается в следующих вариантах:

- проектное значение расхода в соответствии с графиком 150-70 С и заявленной нагрузкой отопления, вентиляции;

- значение расхода, обеспечивающее расчетную температуру воздуха в помещениях в расчетных условиях по температуре наружного воздуха;

- фактическое максимально возможное значение расхода сетевой воды с учетом установленных сетевых насосов.

Снижение температуры воздуха в помещениях при сохранении присоединенных тепловых нагрузок

Определим, как изменится средняя температура в помещениях при температуре сетевой воды в подающей линии o1=115 С, проектном расходе сетевой воды на отопление (будем считать, что вся нагрузка отопительная, так как вентиляционная нагрузка такого же типа) , исходя из проектного графика 150-70 С, при температуре наружного воздуха tн.о=-25 С. Считаем, что на всех элеваторных узлах коэффициенты смешения u расчетные и равны

Для проектных расчетных условий эксплуатации системы теплоснабжения (,,,) справедлива следующая система уравнений:

, (1)

где - среднее значение коэффициента теплопередачи всех приборов отопления с общей площадью теплообмена F, - средний температурный перепад между теплоносителем приборов отопления и температурой воздуха в помещениях, Go - расчетный расход сетевой воды, поступающий в элеваторные узлы, Gп - расчетный расход воды, поступающий в приборы отопления, Gп=(1+u) Go, с - удельная массовая изобарная теплоемкость воды, - среднее проектное значение коэффициента теплопередачи здания с учетом транспорта тепловой энергии через наружные ограждения общей площадью А и затрат тепловой энергии на нагрев нормативного расхода наружного воздуха.

При пониженной температуре сетевой воды в подающей линии o1=115 C при сохранении проектного воздухообмена происходит снижение средней температуры воздуха в помещениях до величины tв. Соответствующая система уравнений для расчетных условий по наружному воздуху будет иметь вид

, (2)

Относительное снижение тепловой мощности системы отопления равно

, (3)

где n - показатель степени в критериальной зависимости коэффициента теплопередачи приборов отопления от среднего температурного напора, см. [3], табл. 9.2, с. 44. Для наиболее распространенных приборов отопления в виде чугунных секционных радиаторов и стальных панельных конвекторов типа РСВ и РСГ при движении теплоносителя сверху вниз n=0,3.

Введем обозначения , , .

Из (1) - (3) следует система уравнений

,

,

,

решения которой имеют вид:

, (4)

(5)

. (6)

Для заданных проектных значений параметров системы теплоснабжения

,

,

Уравнение (5) с учетом (3) для заданной температуры прямой воды в расчетных условиях позволяет получить соотношение для определения температуры воздуха в помещениях:

.

Решением этого уравнения является tв=8,7C.

Относительная тепловая мощность системы отопления равна

С,

С,

С.

Следовательно, при изменении температуры прямой сетевой воды со 150 С до 115 С снижение средней температуры воздуха в помещениях происходит с 18 С до 8,7 С, тепловая мощность системы отопления падает на 21,6%.

Расчетные значения температур воды в системе отопления для принятого отклонения от температурного графика равны С, С.

Выполненный расчет соответствует случаю, когда расход наружного воздуха при работе системы вентиляции и инфильтрации соответствует проектным нормативным значениям вплоть до температуры наружного воздуха tн.о=-25С. Так как в жилых зданиях, как правило, применяется естественная вентиляция, организуемая жильцами при проветривании с помощью форточек, оконных створок и систем микропроветривания стеклопакетов, то можно утверждать, что при низких температурах наружного воздуха расход холодного воздуха, поступающего в помещения, особенно после практически полной замены оконных блоков на стеклопакеты далек от нормативного значения. Поэтому температура воздуха в жилых помещениях по факту значительно выше определенного значения tв=8,7C.

Определение мощности системы отопления за счет снижения вентиляции воздуха помещений при расчетном расходе сетевой воды

Определим, насколько нужно снизить затраты тепловой энергии на вентиляцию в рассматриваемом непроектном режиме пониженной температуры сетевой воды тепловой сети для того, чтобы средняя температура воздуха в помещениях сохранилась на нормативном уровне, то есть, tв= tв.р=18C.

Система уравнений, описывающих процесс работы системы теплоснабжения в этих условиях, примет вид

. (2')

Совместное решение (2') с системами (1) и (3) аналогично предыдущему случаю дает следующие соотношения для температур различных потоков воды:

,

,

.

Уравнение для заданной температуры прямой воды в расчетных условиях по температуре наружного воздуха позволяет найти уменьшенную относительную нагрузку системы отопления (произведено уменьшение только мощности системы вентиляции, теплопередача через наружные ограждения в точности сохранена):

теплоснабжение сетевой вода температурный

.

Решением этого уравнения является =0,706.

Следовательно, при изменении температуры прямой сетевой воды со 150С до 115С сохранение температуры воздуха в помещениях на уровне 18С возможно за счет снижения общей тепловой мощности системы отопления до 0,706 от проектного значения за счет снижения затрат на нагрев наружного воздуха. Тепловая мощность системы отопления падает на 29,4%.

Расчетные значения температур воды для принятого отклонения от температурного графика равны С, С.

Увеличение расхода сетевой воды с целью обеспечения нормативной температуры воздуха в помещениях

Определим, как должен увеличиться расход сетевой воды в тепловой сети на нужды отопления при снижении температуры сетевой воды в подающей линии до o1=115С в расчетных условиях по температуре наружного воздуха tн.о=-25С, чтобы средняя температура в воздуха в помещениях сохранилась на нормативном уровне, то есть, tв=tв.р=18C. Вентиляция помещений соответствует проектному значению.

Система уравнений, описывающих процесс работы системы теплоснабжения, в этом случае примет вид с учетом возрастания значения расхода сетевой воды до Goу и расхода воды через системы отопления Gпу=Gоу(1+u) при неизменном значении коэффициента смешения элеваторных узлов u=2,2. Для наглядности воспроизведем в этой системе уравнения (1)

, (1)

, (2»)

(3')

.

Из (1), (2»), (3') следует система уравнений промежуточного вида

С,

С.

Решение приведенной системы имеет вид:

С, o2=76,5С,

Итак, при изменении температуры прямой сетевой воды со 150 С до 115 С сохранение средней температуры воздуха в помещениях на уровне 18 С возможно за счет увеличения расхода сетевой воды в подающей (обратной) линии тепловой сети на нужды систем отопления и вентиляции в 2,08 раза.

Очевидно, что такого запаса по расходу сетевой воды нет и на теплоисточниках, и на насосных станциях при их наличии. Кроме того, столь высокое увеличение расхода сетевой воды приведет к возрастанию потерь давления на трение в трубопроводах тепловой сети и в оборудовании тепловых пунктов и теплоисточника более, чем в 4 раза, что невозможно реализовать из-за отсутствия запаса сетевых насосов по напору и по мощности двигателей. Следовательно, увеличение расхода сетевой воды в 2,08 раза за счет возрастания только количества установленных сетевых насосов при сохранении их напора неизбежно приведет к неудовлетворительной работе элеваторных узлов и теплообменников большей части тепловых пунктов системы теплоснабжения.

Снижение мощности системы отопления за счет снижения вентиляции воздуха помещений в условиях повышенного расхода сетевой воды

Для некоторых теплоисточников расход сетевой воды в магистралях может быть обеспечен выше проектного значения на десятки процентов. Это связано, как с уменьшением тепловых нагрузок, имевшем место в последние десятилетия, так и с наличием определенного резерва производительности установленных сетевых насосов. Примем максимальное относительное значение расхода сетевой воды равным =1,35 от проектного значения. Учтем также возможное повышение расчетной температуры наружного воздуха по данным СП 131.13330.2012.

Определим, насколько необходимо снизить средний расход наружного воздуха на вентиляцию помещений в режиме пониженной температуры сетевой воды тепловой сети, чтобы средняя температура воздуха в помещениях сохранилась на нормативном уровне, то есть, tв=18 C.

Для пониженной температуры сетевой воды в подающей линии o1=115C происходит снижение расхода воздуха в помещениях с целью сохранения расчетного значения tв=18C в условиях возрастания расхода сетевой воды в 1,35 раза и повышения расчетной температуры холодной пятидневки. Соответствующая система уравнений для новых условий будет иметь вид

, (2''')

Относительное снижение тепловой мощности системы отопления равно

. (3'')

Из (1), (2'''), (3'') следует решение

,

,

.

Для заданных значений параметров системы теплоснабжения и =1,35:

; =115 С; =66 С; =81,3 С.

Учтем также повышение температуры холодной пятидневки до величины tн.о_=-22 C. Относительная тепловая мощность системы отопления равна

Относительное изменение суммарных коэффициентов теплопередачи равно и обусловлено снижением расхода воздуха системы вентиляции.

Для домов постройки до 2000 г. доля затрат тепловой энергии на вентиляцию помещений в центральных районах РФ составляет 40…45% [4], соответственно, падение расхода воздуха системы вентиляции должно произойти приблизительно в 1,4 раза, чтобы общий коэффициент теплопередачи составил 89% от проектного значения.

Для домов постройки после 2000 г. доля затрат на вентиляцию повышается до 50…55%, падение расхода воздуха системы вентиляции приблизительно в 1,3 раза сохранит расчетную температуру воздуха в помещениях.

Выше в 3.2 показано, что при проектных значениях расходов сетевой воды, температуры воздуха в помещениях и расчетной температуры наружного воздуха снижению температуры сетевой воды до 115С соответствует относительная мощность системы отопления 0,709. Если это снижение мощности относить на уменьшение нагрева вентиляционного воздуха, то для домов постройки до 2000 г. падение расхода воздуха системы вентиляции помещений должно произойти приблизительно в 3,2 раза, для домов постройки после 2000 г. - в 2,3 раза.

Анализ данных измерений узлов учета тепловой энергии отдельных жилых домов показывает, что уменьшение потребляемой тепловой энергии в холодные дни соответствует снижению нормативного воздухообмена в 2,5 раза и выше.

Необходимость уточнения расчетной нагрузки отопления систем теплоснабжения

Пусть заявленная нагрузка системы отопления, созданной в последние десятилетия, равна . Эта нагрузка соответствует расчетной температуре наружного воздуха, актуальной в период строительства, принимаемой для определенности tн.о=-25 С.

Ниже приводится оценка фактического снижения заявленной расчетной отопительной нагрузки, вызванная влиянием различных факторов.

Повышение расчетной температуры наружного воздуха до -22 С снижает расчетную нагрузку отопления до величины (18+22)/(18+25) х100%=93%.

Кроме того, следующие факторы приводят к снижению расчетной нагрузки отопления.

1. Замена оконных блоков на стеклопакеты, которая произошла практически повсеместно. Доля трансмиссионных потерь тепловой энергии через окна составляет около 20% от общей нагрузки отопления. Замена оконных блоков на стеклопакеты привела к увеличению термического сопротивления с 0,3 до 0,4 м2•К / Вт, соответственно, тепловая мощность теплопотерь уменьшилась до величины: [1-0,2х (0,4-0,3)/0,3] х100%=93,3%.

2. Для жилых зданий доля вентиляционной нагрузки в нагрузке отопления в проектах, выполненных до начала 2000-х годов, составляет около 40…45%, позже - порядка 50…55%. Примем среднюю долю вентиляционной составляющей в нагрузке отопления в размере 45% от заявляемой нагрузки отопления. Она соответствует кратности воздухообмена 1,0. По современным нормам СТО максимальная кратность воздухообмена находится на уровне 0,5, среднесуточная кратность воздухообмена для жилого здания - на уровне 0,35. Следовательно, снижение нормы воздухообмена с 1,0 до 0,35 приводит к падению отопительной нагрузки жилого здания до величины:

[1-0,45х (1,0-0,35)/1,0] х100%=70,75%.

3. Вентиляционная нагрузка разными потребителями востребована случайным образом, поэтому, как и нагрузка ГВС для теплоисточника ее величина суммируется не аддитивно, а с учетом коэффициентов часовой неравномерности. Доля максимальной нагрузки вентиляции в составе заявленной нагрузки отопления составляет 0,45х0,5/1,0=0,225 (22,5%). Коэффициент часовой неравномерности оценочно примем таким же, как и для ГВС, равным Kчас.вент=2,4. Следовательно, общая нагрузка систем отопления для теплоисточника с учетом снижения вентиляционной максимальной нагрузки, замены оконных блоков на стеклопакеты и неодновременности востребования вентиляционной нагрузки составит величину 0,933х (0,55+0,225/2,4) х100%=60,1% от заявленной нагрузки.

4. Учет повышения расчетной температуры наружного воздуха приведет к еще большему падению расчетной нагрузки отопления.

5. Выполненные оценки показывают, что уточнение тепловой нагрузки систем отопления может привести к ее снижению на 30…40%. Такое снижение нагрузки отопления позволяет ожидать, что при сохранении проектного расхода сетевой воды расчетная температура воздуха в помещениях может быть обеспечена при реализации «срезки» температуры прямой воды при 115 С для низких температур наружного воздуха (см. результаты 3.2). Еще с большим основанием это можно утверждать при наличии резерва в величине расхода сетевой воды на тепловом источнике системы теплоснабжения (см. результаты 3.4).

Приведенные оценки носят иллюстративный характер, но из них следует, что, исходя из современных требований нормативной документации, можно ожидать как существенного снижения суммарной расчетной нагрузки отопления существующих потребителей для теплового источника, так и технически обоснованного режима работы со «срезкой» температурного графика регулирования сезонной нагрузки на уровне 115С. Необходимая степень реального снижения заявленной нагрузки систем отопления должна определяться при проведении натурных испытаний для потребителей конкретной тепловой магистрали. Расчетная температура обратной сетевой воды также подлежит уточнению при проведении натурных испытаний.

Следует иметь в виду, что качественное регулирование сезонной нагрузки не является устойчивым с точки зрения распределения тепловой мощности по приборам отопления для вертикальных однотрубных систем отопления. Поэтому во всех расчетах, приводимых выше, при обеспечении средней расчетной температуры воздуха в помещениях будет иметь место некоторое изменение температуры воздуха в помещениях по стояку в отопительный период при различной температуре наружного воздуха [5].

Литература

1. Соколов Е.Я. Теплофикация и тепловые сети, 7-е изд., М.: Издательство МЭИ, 2001 г.

2. Гершкович В.Ф. «Сто пятьдесят… Норма или перебор? Размышления о параметрах теплоносителя…» // Энергосбережение в зданиях. - 2004 - №3 (22), Киев.

3. Внутренние санитарно-технические устройства. В 3 ч. Ч. 1 Отопление/ В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера, - 4-е изд., перераб. и доп. - М.: Стройиздат, 1990. -344 с.: ил. - (Справочник проектировщика).

4. Самарин О.Д. Теплофизика. Энергосбережение. Энергоэффективность / Монография. М.: Издательство АСВ, 2011.

5. Методические рекомендации по оптимизации гидравлических и температурных режимов функционирования открытых систем коммунального теплоснабжения, разработанные ЗАО «Роскоммунэнерго» в 2003 г.

6. А.Д. Кривошеин, Энергосбережение в зданиях: светопрозрачные конструкции и вентиляция помещений // Архитектура и строительство Омской области, №10 (61), 2008 г.

7. Н.И. Ватин, Т.В. Самопляс «Системы вентиляции жилых помещений многоквартирных домов», СПб, 2004 г.

Размещено на Allbest.ru


Подобные документы

  • Параметры наружного воздуха. Расчет нагрузок потребителей теплоты. Выбор системы теплоснабжения. Определение расходов сетевой воды. Построение пьезометрического графика. Температурный график регулирования закрытой независимой системы теплоснабжения.

    курсовая работа [321,4 K], добавлен 23.05.2014

  • Эффективность водяных систем теплоснабжения. Виды потребления горячей воды. Особенности расчета паропроводов и конденсатопроводов. Подбор насосов в водяных тепловых сетях. Основные направления борьбы с внутренней коррозией в системах теплоснабжения.

    шпаргалка [1,9 M], добавлен 21.05.2012

  • Исследование надежности системы теплоснабжения средних городов России. Рассмотрение взаимосвязи инженерных систем энергетического комплекса. Характеристика структуры системы теплоснабжения города Вологды. Изучение и анализ статистики по тепловым сетям.

    дипломная работа [1,4 M], добавлен 10.07.2017

  • Определение тепловых потоков на отопление, вентиляцию и горячее водоснабжение. Построение температурного графика регулирования тепловой нагрузки на отопление. Расчёт компенсаторов и тепловой изоляции, магистральных теплопроводов двухтрубной водяной сети.

    курсовая работа [1,1 M], добавлен 22.10.2013

  • Исследование и проектирование геотермальных установок, а также системы отопления, работающих на геотермальных источниках теплоснабжения. Расчет коэффициента эффективности для различных систем геотермального теплоснабжения. Подбор отопительных приборов.

    контрольная работа [139,6 K], добавлен 19.02.2011

  • Потери тепла, их основные причины и факторы. Классификация и типы систем теплоснабжения, их характеристика и функциональные особенности: централизованные и децентрализованные, однотрубные, двухтрубные и бифилярные. Способы циркуляции воды в теплосети.

    научная работа [1,3 M], добавлен 12.05.2014

  • Описание систем теплоснабжения исследуемых помещений. Оборудование, используемое для аудита систем теплоснабжения, результаты измерений. Анализ результатов исследования и план энергосберегающих мероприятий. Финансовый анализ энергосберегающих мероприятий.

    дипломная работа [93,3 K], добавлен 26.06.2010

  • Анализ существующей системы энергетики Санкт-Петербурга. Тепловые сети. Сравнительный анализ вариантов развития системы теплоснабжения. Обоснование способов прокладки теплопроводов. Выбор оборудования и строительных конструкций системы теплоснабжения.

    дипломная работа [476,5 K], добавлен 12.11.2014

  • Подготовка к отопительному периоду. Режимы теплоснабжения для условий возможного дефицита тепловой мощности источников тепла, повышение надежности системы. Давления для гидравлических испытаний, графики проведения аварийно-восстановительных работ.

    реферат [65,6 K], добавлен 01.03.2011

  • Построение температурного графика отпуска тепловой энергии потребителям. Подбор насосного оборудования. Тепловые нагрузки на отопление и вентиляцию. Подбор котлов и газового оборудования. Расчет тепловой схемы котельной. Такелажные и монтажные работы.

    дипломная работа [3,0 M], добавлен 20.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.