Метрологические характеристики расходомеров

Диапазон серийно выпускаемых электромагнитных расходомеров. Погрешности определения количества тепла. Повышение динамического диапазона при измерении расхода теплоносителя. Ограничения метрологических характеристик преобразователей расхода воды.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 14,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метрологические характеристики расходомеров: взаимосвязь, противоречия. Что важнее - точность или широкий диапазон измерений?

К.т.н. А.А. Минаков, член Совета НП «Метрология Энергосбережения»,

генеральный директор ЗАО «ПромСервис», г. Димитровград;

А.В. Чигинев, технический директор, ОАО «ТЕВИС», г. Тольятти

Расходомеры сегодня устойчиво ассоциируются с коммерческим учетом тепловой энергии, холодной и горячей воды. Естественно, что все основные характеристики этих приборов, в первую очередь, должны рассматриваться с точки зрения решения задачи коммерческого учета. Учет энергоресурсов и называется коммерческим только потому, что он является основой для взаимных расчетов между поставщиком и потребителем, рынок тепло-, водоснабжения невозможен без учета [1].

При выборе приборов учета потребителем рассматриваются технические (надежность, долговечность, возможность обслуживания и т.д.), метрологические (точность, динамический диапазон, межповерочный интервал), экономические (стоимость прибора, стоимость владения) характеристики. Все эти характеристики взаимосвязаны, т.к., например, достижение высоких технических и метрологических характеристик обычно повышает стоимость прибора и стоимость его обслуживания, включая поверку.

Рассмотрим более подробно основные метрологические характеристики:

¦ точность (погрешность);

¦ динамический диапазон;

¦ межповерочный интервал.

Эти характеристики также, в свою очередь, взаимосвязаны [2]. Получить высокую точность измерений в узком динамическом диапазоне и сохранить ее на короткое время значительно проще, чем выдержать в широком диапазоне и на длительный срок. Потребителю хочется, конечно, чтобы присутствовали и высокая точность, и широкий диапазон измерений, и межповерочный интервал был бы как можно больше, да еще, чтобы все это было очень дешево. Желание Потребителя понятно, и производители приборов, исходя из своего желания угодить Потребителю, и, соответственно, продать больше своей продукции, начинают гонку за показателями. Работают над конструкцией, повышают качество изделий, улучшают метрологические характеристики. Это естественный процесс, который объективно должен бы работать в пользу Потребителя, если бы производители приборов не вносили в него субъективный фактор - желание получить конкурентное преимущество за счет декларирования максимально высоких метрологических характеристик.

Причем речь обычно идет одновременно обо всех характеристиках, да еще и в сочетании со стоимостью.

В этой гонке зачастую выходят за пределы разумного, забывая о том, что улучшение одной характеристики может привести к ухудшению другой; о физических процессах, происходящих в реальных условиях; наконец, о том, что у каждого метода измерения есть свои, естественные ограничения, преодолеть которые не под силу даже при идеальном качестве продукции [2]. Естественно, с повышением метрологических характеристик повышается и стоимость приборов учета.

Потребители приборов, в общем-то, «повелись» на предложение производителей приборов, не очень-то задумываясь: «А какие значения метрологических характеристик им нужны? Какие из характеристик важнее для коммерческого учета? Нет ли тут какого-то подвоха?». Попробуем проанализировать необходимые значения всех перечисленных характеристик.

Диапазон расходомера в учете тепла и ГВС - а сколько на самом деле надо [3]?

Есть мнение - чем больше, тем лучше!

Существуют серийно выпускаемые электромагнитные расходомеры (практически у всех производителей) с диапазоном 1:1000.

Есть информация о диапазонах до 1:5000.

А в каких диапазонах реально эксплуатируются преобразователи расхода?

В ОАО «ТЕВИС» накоплены данные за более, чем 20 лет эксплуатации приборов более, чем на 1000 объектов. Результаты обработки накопленных данных показывают, что динамический диапазон при измерении расхода в циркуляционных системах отопления и ГВС ни разу не превысил 1:13!!! Проект новых не утвержденных пока «Правил учета...» предписывает соблюдение динамического диапазона расходомера не менее 1:50, т.е. примерно в 4 раза шире, чем требуется в действительности. Аналогичное требование включено в проект «Методических рекомендаций по организации учета и автоматического регулирования.» от НП «Российское теплоснабжение». электромагнитный расходомер теплоноситель

Межповерочный интервал (МПИ)

Казалось бы, здесь все ясно. Чем дольше сохраняются заявленные метрологические характеристики (точность, диапазон), тем лучше.

МПИ у большинства производителей расходомеров воды не менее 4-х лет на все типы датчиков расхода.

Вопрос: «А все ли типы датчиков расхода способны сохранять заявленные метрологические характеристики в течение этого срока [2,]?»

Давно считается общеизвестным, что у тахометрических датчиков расхода точность и динамический диапазон быстро снижаются в процессе эксплуатации.

Очень сильно зависят от условий и продолжительности эксплуатации эти характеристики и для электромагнитных расходомеров.

Нам в ЗАО «ПромСервис» попадались электромагнитные датчики расхода воды, систематическая погрешность которых за 3 года возросла более чем на 30% (на столько они при этом уменьшали реальный расход). И только вихревые и ультразвуковые расходомеры подтверждали свои метрологические характеристики в заявленном МПИ.

Именно поэтому в качестве образцовых средств при поверки методом сличения в ЗАО «ПромСервис» используются вихревые датчики расхода ВЭПС-М с индивидуальной градуировкой [4].

Росстандарту надо быть внимательнее и требовательнее при утверждении типа на расходомеры с МПИ больше 1 года и требовать реальных подтверждений сохранения метрологических характеристик в течение длительного времени.

Точность (погрешность)

Единственная характеристика, величина которой напрямую связана с точностью оплаты тепла (воды). Учитывая, что основная часть погрешности определения количества тепла определяется погрешностью измерения расхода, повышение точности расходомеров - основной путь повышения точности оплаты за тепло-, водоснабжение.

При огромных объемах поставляемых энергоресурсов погрешность измерения расхода воды не только ±2% (допустимые сегодня), но и ±1% приводят к очень значимым погрешностям при оплате энергоресурсов.

Реальное же повышение точности измерения расхода теплоносителя и воды (например, до ±0,5%) возможно только при малом значении динамического диапазона и снижении межповерочного интервала.

Выводы

1. Повышение динамического диапазона при измерении расхода теплоносителя больше, чем 1:25 нецелесообразно из-за отсутствия в действительности такого диапазона расходов в реальных сетях теплоснабжения и ГВС.

2. Межповерочный интервал более 1 года требует длительного экспериментального подтверждения, без которого его нельзя считать обоснованным.

3. Для повышения точности расчетов за энергоресурсы необходимо повышение точности измерения расхода воды.

Литература

1. Минаков А.А. Теплоснабжение - это рынок?! / Сборник материалов VIII Международной научно-практической конференции «Энергоресурсосбережение. Диагностика-2006», г. Димитровград, 2006 г. С. 13-14.

2. Минаков А.А. Естественные ограничения метрологических характеристик преобразователей расхода воды, накладываемых методом измерений. / Сборник материалов VIII Международной научно-практической конференции «Энергоресурсосбережение. Диагностика-2006». г. Димитровград. 2006 г. С. 100-105.

3. Чигинев А.В. Диапазон расходомера в теплоплоучете - а сколько на самом деле надо? / Доклад на IV Международном конгрессе «Энергоэффективность. XXI век.», Санкт-Петербург, 2012, с. 56-65.

4. Гайнутдинов З.Х. Проливная установка ЗАО «ПромСервис». / Сборник материалов IX Международной научнопрактической конференции «Энергоресурсосбережение. Диагностика-2007». С. 67-73.

Размещено на Allbest.ru


Подобные документы

  • Общие сведения о приборах учета тепловой энергии и теплоносителя. Состав теплосчетчика. Функции, выполняемые тепловычислителем. Способы измерения расхода теплоносителя. Датчики расхода теплоносителя. Погрешность показаний электромагнитных расходомеров.

    контрольная работа [545,6 K], добавлен 23.12.2012

  • Чертеж сужающего устройства и схема соединительных линий при измерении расхода пара. Датчики разности давления и образцового сопротивления. Расчет статических номинальных метрологических характеристик измерительного канала. Выбор аналогового коммутатора.

    курсовая работа [438,0 K], добавлен 13.04.2012

  • Основные сведения об измерении расхода и массы веществ. Общая характеристика основных видов расходомеров, а также рекомендации по их выбору. Конструкция, принцип работы, монтажные и электрические схемы подключения ультразвукового расходомера UFM 3030.

    курсовая работа [2,2 M], добавлен 27.05.2010

  • Принцип работы и конструкция лопастного ротационного счетчика количества воды. Определение по счетчику объема воды, поступившей в емкость за время между включением и выключением секундомера. Расчет относительной погрешности измерений счетчика СГВ-20.

    лабораторная работа [496,8 K], добавлен 26.09.2013

  • Профилирование расходов по тепловыделяющим сборкам активной зоны реактора ВВЭР-1000. Определение расхода теплоносителя через межкассетные зазоры и доли тепла, перетекающего в межкассетное пространство. Расчет мощности главного циркуляционного насоса.

    курсовая работа [279,9 K], добавлен 08.12.2013

  • Принципиальная тепловая схема парогенератора. Предварительный расчет тепловой мощности, расхода теплоносителя и рабочего тепла. Выбор материалов и параметров. Определение гидравлических сопротивлений препятствующих движению теплоносителя и рабочего тела.

    курсовая работа [356,4 K], добавлен 09.08.2012

  • Средства контроля и регулирования параметров теплогидравлического режима реактора. Оперативный контроль параметров расхода теплоносителя через технологический канал средствами СЦК Скала. Порядок корректировки режима при работе реактора на мощности.

    отчет по практике [2,4 M], добавлен 07.08.2013

  • Определение числовых значений объёмного, массового и весового расхода воды, специфических характеристик режима движения, числа Рейнольдса водного потока, особенности вычисления величины гидравлического радиуса трубопровода в условиях подачи воды.

    задача [25,1 K], добавлен 03.06.2010

  • Методы измерения температур теплоносителя и воздуха, давления и расхода теплоносителя, уровня воды и конденсата в баках. Показывающие, самопищущие, сигнализирующие и теплоизмерительные приборы. Принципиальные схемы автоматизации узлов тепловых сетей.

    курсовая работа [1,7 M], добавлен 15.11.2010

  • График центрального качественного регулирования отпуска теплоты. Определение расчетных расходов тепла и сетевой воды, отопительной нагрузки. Построение графика расходов тепла по отдельным видам теплопотребления и суммарного графика расхода теплоты.

    курсовая работа [176,5 K], добавлен 06.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.