Нетрадиционная энергетика и защита окружающей среды

Численность населения и прогресс качества жизни общества как фактор роста энергопроизводства. Сравнение электростанций разного типа. Удельные мощности нетрадиционных возобновляемых источников энергии. Экологические проблемы тепловой и ядерной энергетики.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 11.01.2017
Размер файла 39,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Комсомольский-на-Амуре государственный технический университет»

Институт новых информационных технологий

Факультет Инженерно-экономический

Кафедра «ЭПАПУ»

Реферат

По дисциплине: «История развития электроэнергетики»

На тему: «Нетрадиционная энергетика и защита окружающей среды»

Студент группы 5ЭПб3а-3

И.М. Столяров

Преподаватель В.Ф. Горячев

2017

Содержание

Введение

1. Нетрадиционная энергетика

1.1 Нетрадиционная энергетика и ее характеристика

1.2 Ветроэнергетика

1.3 Гелиоэнергетика

1.4 Биоэнергетика

1.5 Другие виды нетрадиционной энергетики

2. Энергетика и окружающая среда

2.1 Экологические проблемы тепловой энергетики

2.2 Экологические проблемы гидроэнергетики

2.3 Экологические проблемы ядерной энергетики

Заключение

Литература

Введение

Энергия - всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое - действие, деятельность) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую.

Согласно представлениям физической науки, энергия - это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия - результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия - результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия - проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических.

Тепловая энергия - энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия - энергия движущихся по электрической цепи электронов (электрического тока).

Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов

обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия - энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.

Электромагнитная энергия - это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии - атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия - энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли - энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира - гравитационную, энергию взаимодействия тел - механическую, энергию молекулярных взаимодействий - тепловую, энергию атомных взаимодействий - химическую, энергию излучения - электромагнитную, энергию, заключенную в ядрах атомов - ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен 1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт*час (Вт*ч, кВт*ч, МВт*ч), 1 Вт*ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг*м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной. В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию.

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.

К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).

Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.

Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет.

Электрическая энергия - более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.

Электрификация - основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии - электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество - очень удобный для применения и экономичный вид энергии.

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:

1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.

2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.

3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

1. Нетрадиционная энергетика

1.1 Нетрадиционная энергетика и ее характеристика

Главным фактором роста энергопроизводства является рост численности населения и прогресс качества жизни общества, который тесно связан с потреблением энергии на душу населения. Сейчас на каждого жителя Земли приходится 2 кВт, а признанная норма качества - 10 кВт (в развитых странах). Если все население Земли рано или поздно должно иметь душевое потребление 10 кВт, то с учетом теплового барьера численность населения не должна превышать 10 млрд. чел. Таким образом, развитие энергетики на невозобновляемых ресурсах ставит жесткий предел численности населения планеты. Однако уже через 75 лет население Земли может достигнуть 20 млрд. чел. Отсюда видно: уже сейчас надо думать о сокращении темпов прироста населения примерно вдвое, к чему цивилизация совсем не готова. Очевиден надвигающийся энергодемографический кризис. Это еще один веский аргумент в пользу развития нетрадиционной энергетики.

Многие специалисты энергетики считают, что единственный способ преодоления кризиса - это масштабное использование возобновляемых источников энергии: солнечной, ветровой, океанической, или как их еще называют нетрадиционных. Правда, ветряные и водяные мельницы известны с незапамятных времен, и в этом смысле они - самые, что ни есть традиционные.

В наши дни поворот к использованию энергии ветра, солнца, воды происходит на новом более высоком уровне развития науки и техники.

Использование традиционных энергоресурсов, кроме поглощения кислорода, приводит к значительному загрязнению окружающей среды. Ограниченность энергоресурсов, влияние их использования на состав атмосферного воздуха и другие негативные воздействия на окружающую среду (образование отходов, нарушение пластов земной коры, изменение климата) вызывают повышенный интерес во всем мире к нетрадиционным источникам энергии, к которым относятся: солнечная энергия; энергия ветра; геотермальная энергия; энергия океанов и морей в виде аккумулированной теплоты, морских течений, морских волн, приливов и отливов, использование водорослей, сельскохозяйственных и городских отходов, биомассы.

Экономическое сравнение электростанций разного типа (на 1991 год) представлено в табл. 1.1.

Таблица 1.1 Экономическое сравнение электростанций разного типа

Тип электростанции

Затраты на строительство, USD/кВт

Стоимость произведенной энергии, цент/кВт*ч

ТЭС на угле

1000 - 1400

5,2 - 6,3

АЭС

2000 - 3500

3,6 - 4,5

ГЭС

1000 - 2500

2,1 - 6

ВЭС

300 - 1000

4,7 - 7,2

Приливные (ПЭС)

1000 - 3500

5 - 9

Волновые

От 13000

от 15

Солнечные (СЭС)

От 14000

от 20

Экономически целесообразным считается строительство электростанций с удельными капитальными затратами до 2000 USD/кВт.

К 2010 году страны Европейского союза (ЕС) планируют увеличить использование нетрадиционных источников энергии до 8% в общем объеме энергопотребления.

Удельные мощности нетрадиционных возобновляемых источников энергии (НВИЭ) для сопоставления и сравнения с традиционными источниками представлены в табл. 1.2.

Таблица 1.2 Удельные мощности нетрадиционных возобновляемых источников энергии

Источник

Мощность, Вт/м2

Примечание

Солнце

100 - 250

Ветер

1500 - 5000

При скорости 8-12 м/с, может быть и больше в зависимости от скорости ветра

Геотермальное тепло

0.06

Ветровые океанические волны

3000 Вт/пог.м

Может достигать 10000 Вт/пог.м

Для сравнения:

Двигатель внутреннего сгорания

Турбореактивный двигатель

Ядерный реактор

Около 100 кВт/л

До 1 МВт/л

До 1 МВт/л

Говоря о НВИЭ, необходимо также отметить, что многие из них на единицу произведенной электроэнергии и обеспечение функционирования требуют расхода природных источников энергии (табл. 2.3).

Таблица 1.3 Энергетические потребности для производства электроэнергии при использовании возобновляемых источников

Тип энергетической установки

Расход энергии природного источника на единицу произведенной электроэнергии, отн.ед.

Установка на биомассе

0,82 - 1,13

ГеоТЭС

0,08 - 0,37

ГЭС малой мощности

большой мощности

0,03 - 0,12

0,09 - 0,39

Солнечная фотоэлектрическая установка:

наземная

спутниковая

0,47

0,11 - 0,48

Солнечная теплоустановка (зеркала)

0,15 - 0,24

Приливная станция

0,07

Ветроэнергетическая установка

0,06 - 1,92

Волновая станция

0,3 - 0,58

1.2 Ветроэнергетика

Ветровая энергетика - это получение механической энергии от ветра с последующим преобразованием ее в электрическую. Имеются ветровые двигатели с вертикальной и горизонтальной осью вращения. Энергию ветра можно успешно использовать при скорости ветра 5 и более м/с. Недостатком является шум.

Ориентиром в определении технического потенциала Республики Беларусь могут служить официальные оценки возможной доли ветроэнергетики в сложившейся структуре электропотребления таких стран, как Великобритания и Германия. Доля ветроэнергетики в этих странах оценена в 20%.

Потенциал энергии ветра в мире огромен. Теоретически эта энергия могла бы удовлетворить все потребности Европы. Последние инженерные успехи в строительстве ветровых гене-раторов, способных работать при низких скоростях, делают ис-пользование ветра экономически оправданным. Однако, ограни-чения на строительство ВЭС, особенно в густонаселенных райо-нах, значительно снижают потенциал этого источника энергии.

Наибольшая доля (до 3%) в производстве электроэнергии ВЭС получена в 1993 г. в Дании, где ветровые турбины рассеяны по всей стране. Строительство современных ВЭС началось здесь в конце 70-х годов. А в начале 80-х в штате Калифорния (США) наблюдался особенно интенсивный рост ВЭС. Принятие здесь закона о налоговых льготах на инвестиции в возобновляемые источники энергии в дополнение к федеральным налоговым льготам создало благоприятную обстановку. В результате Калифорния превратилась в мирового лидера по производству электроэнергии из ветра. США могут потерять это лидерство, так как в ЕС поставили цель вырабатывать в 2005 г. 8 тыс. МВт ветровой электроэнергии, что составляет 1% потребностей ЕС в электроэнергии. Дания, Германия и Нидерланды должны довести к этому времени выработку электроэнергии из ветра по крайней мере до 5000 МВт.

Стоимость ветровой энергии снижается на 15% в год и даже сегодня может конкурировать на рынке, а главное - имеет перспективы дальнейшего снижения в отличие от стоимости энергии, получаемой на АЭС (последняя повышается на 5% в год); при этом темпы роста ветроэнергетики в настоящее время превышают 25% в год. Использование энергии ветра в различных государствах набирает силу, что находит подтверждение в табл. 2.4.

Опыт освоения энергии ветра в развитых государствах показывает, что наиболее оптимальными являются ветроустановки мощностью более 100 кВт, особенно в диапазоне 200--500 кВт. При этом в Дании, например, стоимость 1 кВт*ч. электроэнергии, произведенной на ветроэлектростанции, дешевле, чем на теплоэлектростанции.

1.3 Гелиоэнергетика

Гелеоэнергетика - получение энергии от Солнца. Имеется несколько технологий солнечной энергетики. Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца, собранные из большого числа последовательно и параллельно соединенных элементов, получили название солнечных батарей.

Таблица 1.4 Развитие ветроэнергетики в странах

Государство

Мощности ветроэлектростанций, введенных в 1995 г., МВт

Суммарные действующие мощности ветро-электростанций по состоянию на 1996 г., МВт

Германия

Индия

Дания

Нидерланды

Испания

США

Швеция

Китай

Италия

Другие

Всего

500

375

98

95

58

53

29

14

11

57

1289

1132

576

637

219

133

1654

69

44

33

370

4897

Получение электроэнергии от лучей Солнца не дает вредных выбросов в атмосферу, производство стандартных силиконовых солнечных батарей также причиняет мало вреда. Но производство в широких масштабах многослойных элементов с использованием таких экзотических материалов, как арсенид галлия или сульфид кадмия, сопровождается вредными выбросами.

Cолнечные батареи занимают много места. Однако в сравнении с другими источниками, например с углем, они вполне приемлемы. Более того, солнечные батареи могут помещаться на крышах домов, вдоль шоссейных дорог, а также использоваться в богатых солнцем пустынях.

Особенности солнечных батарей позволяют располагать их на значительном расстоянии, а модульные конструкции можно легко транспортировать и устанавливать в другом месте. Поэтому солнечные батареи, применяемые в сельской местности и в отдаленных районах, дают более дешевую электроэнергию. И, конечно, солнечных лучей по всему земному шару найдется больше, чем других источников энергии.

Жители отдаленных районов используют энергию солнечных батарей для освещения, радиовещания и других бытовых нужд. Практическое применение солнечной энергии следует отметить также при подъеме воды из скважин и на нужды здравоохранения.

Главной причиной, сдерживающей использование солнечных батарей, является их высокая стоимость, которая в будущем, вероятно, снизится благодаря развитию более эффективных и дешевых технологий. Нынешняя стоимость солнечной электроэнергии равняется 4,5 долларов за 1 Вт мощности и, как результат, цена 1 кВт*ч электроэнергии в 6 раз дороже энергии, полученной традиционным путем сжигания топлива. Когда же цена производства солнечной энергии сравняется с ценой энергии от сжигания топлива, оно получит еще более широкое распространение, причем с начала 90-х гг. темпы роста гелио-энергетики составляют 6% в год, в то время как мировое потребление нефти растет на 1,5% в год.

Возможно использование солнечной энергии для получения тепловой, в частности, для отопления жилищ.

Интересны примеры использования солнечной энергии в разных странах. электростанция возобновляемый тепловой ядерный

В условиях Великобритании жители сельской местности покрывают потребность в тепловой энергии на 40-50% за счет использования энергии Солнца.

В Германии (под Дюссельдорфом) проводились испытания солнечной водонагревательной установки площадью коллекторов 65 м2. Эксплуатация установки показала, что средняя экономия тепла, расходуемого на обогрев, составила 60%, а в летний период - 80-90%. Для условий Германии семья из 4 человек может обеспечить себя теплом при наличии энергетической крыши площадью 6-9 м2.

Современные солнечные коллекторы могут обеспечить нужды сельского хозяйства в теплой воде в летний период на 90%, в переходный период - на 55-65%, в зимний - на 30%.

В Австрии установлено, что для обеспечения 80% теплой водой в жилых сельских домах на 1 человека требуется установка солнечных коллекторов с поверхностью 2-3 м2 и емкостью бака для воды 100-150 л. Установка площадью 25 м2 с емкостью для нагретой воды на 1000-1500 л обеспечивает теплой водой 12 человек или небольшой сельский двор.

Наиболее эффективно в странах ЕС солнечные энергоустановки эксплуатируются в Греции, Португалии, Испании, Франции: выработка энергии солнечными энергоустановками составляет соответственно 870000, 290000, 255200, 174000 МВт ч в год.

В целом по Европейскому союзу вырабатывается 185600 МВт*ч в год (по данным 1992 г.).

Наибольшей суммарной площадью установленных солнечных коллекторов располагают: США - 10 млн. м2, Япония - 8 млн. м2, Израиль - 1,7 млн. м2, Австралия - 1,2 млн. м2. В настоящее время 1 м2 солнечного коллектора вырабатывает электрической энергий:

4,86-6,48 кВт*в сутки;

1070-1426 кВт*ч в год.

Нагревает воды в сутки:

420-360 л (при 30°С);

210-280 л (при 40°С);

130-175 л (при 50°С);

90-120 л (при 60°С).

Экономит в год:

электроэнергии - 1070-1426 кВт*ч;

условного топлива - 0,14-0,19 т;

природного газа - 110-145 нм3;

угля - 0,18-0,24 т;

древесного топлива - 0,95-1,26 т.

Площадь солнечных коллекторов 2-6 млн. м2 обеспечивает выработку 3,2--8,6 млрд. кВт*ч энергии и экономит 0,42-1,14 млн. т.у.т. в год.

1.4 Биоэнергетика

Биоэнергетика- это энергетика, основанная на использовании биотоплива. Она включает использование растительных отходов, искусственное выращивание биомассы (водорослей, быстрорастущих деревьев) и получение биогаза. Биогаз - смесь горючих газов (примерный состав: метан - 55-65% , углекислый газ - 35-45% , примеси азота, водорода, кислорода и сероводорода), образующаяся в процессе биологического разложения биомассы или органических бытовых расходов. Способы промышленного получения биогаза известны с конца прошлого века (1885 г.).

В мире эксплуатируется более 8 млн. установок для получения биогаза.

Биомасса - наиболее дешевая и крупномасштабная форма аккумулирования возобновляемой энергии. Под термином «биомасса» подразумеваются любые материалы биологического происхождения, продукты жизнедеятельности и отходы органического происхождения. Биомасса будет на Земле, пока на ней существует жизнь. Ежегодный прирост органического вещества на Земле эквивалентен производству такого количества энергии, которое в десять раз больше годового потребления энергии всем человечеством на современном этапе.

Источники биомассы, характерные для нашей республики, могут быть разделены на несколько основных групп:

1. Продукты естественной вегетации (древесина, древесные отходы, торф, листья и т.п.).

2. Отходы жизнедеятельности людей, включая производственную деятельность (твердые бытовые отходы, отходы промышленного производства и др.).

3. Отходы сельскохозяйственного производства (навоз, куриный помет, стебли, ботва и т.д.).

4. Специально выращиваемые высокоурожайные агрокультуры и растения.

Переработка биомассы в топливо осуществляется по трем направлениям.

Первое: биоконверсия, или разложение органических веществ растительного или животного происхождения в анаэробных (без доступа воздуха) условиях специальными видами бактерий с образованием газообразного топлива (биогаза) и/или жидкого топлива (этанола, бутанола и т.д.). В настоящее время в Бразилии на этаноле, полученном в результате разложения биомассы из отходов сахарного тростника, работает городской автотранспорт и многие личные автомобили. В США этанол получают из отходов кукурузы. Этанол является хорошим заменителем бензина, при этом в отличие от нефти биомасса является достаточно быстро возобновляемым ресурсом. К биоконверсии относится также получение тепловой энергии при аэробном микробиологическом окислении органических веществ. Так по научному называется компостирование и биоподогрев, о чем знает каждый огородник.

Второе: термохимическая конверсия (пиролиз, газификация, быстрый пиролиз, синтез) твердых органических веществ (дерева, торфа, угля) в «синтез-газ», метанол, искусственный бензин, древесный уголь.

Третье: сжигание отходов в котлах и печах специальных конструкций. В мире сотни миллионов тонн таких отходов сжигаются с регенерацией энергии. Прессованные брикеты из бумаги, картона, древесины, полимеров по теплотворной способности сравнимы с бурым углем.

Малая гидроэнергетика. В настоящее время признанных единых критериев причисления ГЭС к категории малых гидростанций не существует. У нас принято считать малыми гидростанции мощностью от 0,1 до 30 МВт, при этом введено ограничение по диаметру рабочего колеса гидротурбины до 2 м и по единичной мощности гидроагрегата - до 10 МВт. ГЭС установленной мощностью менее 0,1 МВт выделены в категории микро-ГЭС.

Малая гидроэнергетика в мире в настоящее время переживает третий виток в истории своего развития. Строительство первых ГЭС началось еще в прошлом веке, когда они предназначались для энергоснабжения отдельных заводов и поселков. Затем темпы их строительства замедлились из-за конкуренции небольших тепловых электростанций. Второй этап массового строительства малых ГЭС пришелся на конец 40-х - начало 50-х гг., когда тысячи малых гидростанций строились колхозами, совхозами, предприятиями и государством. В 70-80-х гг. сотни и тысячи малых ГЭС были выведены из эксплуатации либо законсервированы, либо ликвидированы из-за быстрого развития большой энергетики на базе крупных тепловых гидравлических и атомных станций. На третьем витке возрождение малых ГЭС, естественно, происходит на новом техническом уровне основного энергетического оборудования, степени автоматизации и компьютеризации.

1.5 Другие виды нетрадиционной энергетики

Геотермальная энергетика - получение энергии от внутреннего тепла Земли. Различают естественную и искусственную геотермальную энергию - от природных термальных источников и от закачки в недра Земли воды, других жидкостей или газообразных веществ («сухая» и «мокрая» геотермальная энергетика). Данный вид энергетики широко применяется для бытовых целей и отопления теплиц. Имеются геотермальные ТЭС. Недостаток - токсичность термальных вод и химическая агрессивность жидкостей и газов.

Космическая энергетика - получение солнечной энергии на специальных геостационарных спутниках Земли с узконаправленной передачей энергии на наземные приемники.

На этих спутниках солнечная энергия трансформируется в электрическую и в виде электромагнитного луча сверхвысокой частоты передается на приемные станции на Земле, где преобразуется в электрическую энергию. Мощность одной орбитальной станции может составить от 3000 до 15000 МВт.

Морская энергетика базируется на энергии приливов и отливов (Кислогубская ЭС на Кольском полуострове), морских течений и разности температур в различных слоях морской воды. Иногда к ней относят волновую энергетику. Пока морская энергетика малорентабельна из-за разрушающего воздействия на оборудование морской воды. Приливная энергетика рентабельна па побережьях морей с исключительно высокими приливами.

Низкотемпературная энергетика - получение энергии с использованием низкотемпературного тепла Земли, воды и воздуха, вернее разности в температурах их различных слоев. Промышленное получение энергии с использованием разности температур на поверхности и в глубинах океана пока не выходит за рамки опытных установок.

«Холодная» энергетика - способы получения энергоносителей путем физико-химических процессов, идущих при низких температурах и сходных с происходящими в растениях. Например, разложение воды на асимметричных мембранах под воздействием солнечного света. Молекула воды распадается на водород и кислород, скапливающиеся по разные стороны этой мембраны. Водород затем используют как энергоноситель. КПД таких мембран в последние годы удалось заметно повысить, а цену - понизить. Вероятно, это перспективный путь. Предполагается, что водород будет широко использоваться в авиации, водном и наземном транспорте, промышленности, сельскохозяйственном производстве. Сжигание водорода не дает вредных выбросов, но он взрывоопасен.

Управляемая термоядерная реакция. Физики работают над освоением управляемой термоядерной реакции синтеза ядер тяжелого водорода с образованием гелия. При таком соединении выделяется громадное количество энергии, гораздо больше, чем при делении ядер урана.

Доказано, что основная доля энергии Солнца и звезд выделяется именно при синтезе легких элементов. Если удастся осуществить управляемую реакцию синтеза, появится неограниченный источник энергии.

Ученые уверены, что в начале следующего тысячелетия получение энергии за счет термоядерного синтеза превратится из чисто теоретической концепции в обыденную реальность.

Весьма перспективными являются энергетические установки, преобразующие одни виды энергии в другие нетрадиционными способами с высоким КПД.

Тепловую энергию в электрическую преобразует магнито-гидродинамический генератор (МГД), который относится к перспективным устройствам (рис. 2.5).

В настоящее время имеется практика эксплуатации магнитогидродинамичекой (МГД) установки, КПД которой превышает 45%. Чтобы понять принцип действия МГД генераторов, следует вспомнить два положения физики:

при высоких температурах (2500 - 3000о С) газы ионизируются, образуется так называемая плазма;

электрический ток - это направленное движение электронов в металлах или ионов в жидкостях и газах.

Движение плазмы представляет собой электрический ток. Для разделения положительных и отрицательных ионов плазма должна пересекать магнитное поле, в котором положительные ионы отклоняются в одну сторону, а отрицательные - в другую. Концентрация положительных и отрицательных ионов на металлических пластинах придает им положительный и отрицательный потенциал; пластины становятся источником электродвижущей силы (ЭДС). В МГД установках в качестве энергоносителя используется низкотемпературная плазма (около 2700о С), образующаяся при сгорании органического топлива - природного газа или твердого топлива.

Большой интерес уделяют непосредственному преобразованию химической энергии органического топлива в электрическую - созданию топливных элементов. Распространение получили низкотемпературные (t=150°С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей КОН). Топливом в элементах служит водород, окислителем - кислород из воздуха.

Ведутся работы по созданию энергетических установок, использующих энергию гравитации, вакуума, низких температур окружающего воздуха для обогревания помещений по принципу теплового насоса («холодильник наоборот», морозильное отделение которого помещено на улице).

2. Энергетика и окружающая среда

Современный период развития человечества иногда характеризуют через три «Э»: энергетика, экономика, экология. Энергетика в этом ряду занимает особое место. Она является определяющей и для экономики, и для экологии. От нее зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, экологические системы и биосферу в целом. Самые острые экологические проблемы, такие как изменение климата, кислотные осадки, всеобщее загрязнение среды, стремительное истощение запасов органического топлива, прямо или косвенно связаны с производством или использованием энергии. Энергетике принадлежит первенство не только в химическом, но и других видах загрязнения: тепловом, аэрозольном, электромагнитном, радиоактивном, вибрационном. Поэтому от решения энергетических проблем зависит возможность решения основных экологических проблем. Энергетика - отрасль производства, развивающаяся невиданными темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет.

Проблемы отыскания альтернативных способов получения энергии всегда интересовали человечество, однако столь волнующими, как сегодня, они не были никогда. Мировое потребление энергии стало соизмеримым с запасами горючих ископаемых - базой современной энергетики. То, что природой создавалось на протяжении геологических эпох (миллионов лет), расходуется в течение нескольких десятилетий. Если до 1980 года всего в мире было добыто 150 млрд. т н э, то за 20 последних лет ХХ века предполагается использовать почти в 1,2 раза больше, что грозит не только исчерпанием легкодоступных, дешевых месторождений, но и серьезными экологическими осложнениями.

Во всем мире для производства электрической и тепловой энергии используется органическое топливо, атомная и гидроэнергия. При условии, что энергоресурсы будут потребляться все возрастающими темпами, называются следующие приблизительные сроки их полного израсходования: уголь - в конце XXII века; нефть и газ - в конце XXI века; уран - в середине XXI века.

Гидроэнергия относится к возобновляемым видам энергии, но и ее освоение закончится к началу XXI века.

Однако некоторые футурологи считают, что раньше, чем человечество сожжет последний килограмм топлива, оно израсходует последний килограмм кислорода. По имеющимся расчетам, расход кислорода быстро растет. Так, если в 1960 г. на сожжение всех видов топлива понадобилось 1,3 млрд. тонн кислорода, то в 1980 г. - уже 12 млрд. тонн, а в 2000 г. энергетика поглотила около 60 млрд. тонн кислорода атмосферы.

Кроме проблемы ограниченности природных ресурсов имеется и ряд других негативных последствия использования органического топлива на окружающую среду. Так, извлечение нефти и природного газа ведет к оседанию почвы. Нефть и газ, скопившиеся в пористых породах под поверхностью Земли, служат своеобразной «подушкой», поддерживающей лежащую сверху породу. Когда эта подушка извлекается, земная поверхность в районе залегания нефти и газа опускается на глубину до 10 метров. Кроме того, извлечение из земных недр полезных ископаемых ведет к перераспределению гравитационного напряжения в земной коре, которые иногда заканчиваются землетрясениями.

Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в окружающую среду загрязняющих веществ. Тепловые электростанции вместе с транспортом поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО), около 50% диоксида серы, 35% оксидов азота и около 35% пыли.

2.1 Экологические проблемы тепловой энергетики

В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа - 400 млн. доз, магния - 1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в живые организмы в незначительных количествах, что, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экологических систем.

Тепловая энергетика оказывает отрицательное влияние практически на все элементы окружающей среды, в том числе на человека, другие живые организмы и их сообщества. Влияние энергетики на окружающую среду сильно зависит от вида используемого топлива. Наиболее «чистым» топливом является природный газ, дающий при его сжигании наименьшее количество загрязняющих атмосферу веществ. Далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф. Как уже говорилось выше, в процессе сжигания топлива образуется много побочных веществ. При сжигании угля образуется значительное количество золы и шлака. Большую часть золы можно уловить, но не всю. Все отходящие газы потенциально вредны, даже пары воды и диоксид углерода СО2. Эти газы поглощают инфракрасное излучение земной поверхности и часть его вновь отражают на Землю, создавая так называемый «парниковый эффект». Если уровень концентрации СО2 в атмосфере Земли будет увеличиваться, могут произойти глобальные климатические изменения.

При сжигании топлива образуется теплота, часть которой выбрасывается в атмосферу, приводя к тепловому загрязнению атмосферы. Это, в конечном итоге, влечет повышение температуры водного и воздушного бассейнов, таянию ледников и тому подобным явлениям. Весь этот процесс накопления теплоты может привести к ощутимому повышению температуры на Земле, если использование энергии будет продолжать расти такими же темпами, как сейчас. В свою очередь повышение температуры может вызвать глубокие изменения климата на всей Земле.

Таким же катастрофическим может быть эффект от поступления в атмосферу большого количества твердых частиц.

В табл. 2.5 приводятся количественные данные о различных веществах, образующихся при работе типовой ТЭС мощностью 1000 МВт на органическом топливе.

Таблица 2.5 Выбросы загрязняющих веществ при работе ТЭС мощностью 1000 МВт

Загрязняющее вещество

Количество за год

SОx, т

NxOx, т

СО2, т

СО

Твердые частицы, т

Радиоактивность *, Бк

Дымовые газы, ГДж

Теплота от конденсата, ГДж

1 100

350

72 500

94

300

259

1 350

4 050

* Радиоактивность дают, главным образом, изотопы радия 235Ra и 238Ra. Приводятся данные для угля. Для нефти этот показатель в 50 раз меньше.1

2.2 Экологические проблемы гидроэнергетики

Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища, на месте которых уничтожаются естественные экологические системы. Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных.

Со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава населяющих их живых организмов.

Кроме того, в водохранилищах по разным причинам происходит ухудшение качества воды. В них резко увеличивается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные осадки, гумус почв и т.п.), так и в следствие их накопления в результате замедленного водообмена. Это своего рода отстойники и аккумуляторы веществ, поступающих с водосборов.

В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и другие процессы, обусловливаемые тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых сине-зеленых (цианей). По этим причинам, а также вследствие медленной обновляемости вод, резко снижается их способность к самоочищению. Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражение гельминтами. Снижаются вкусовые качества обитателей водной среды. Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т.п.

В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичным возможность использования территорий, занимаемых водохранилищами, после их ликвидации.

Водохранилища оказывают заметное влияние на атмосферные процессы. Например, в засушливых районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз. С повышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Различие тепловых балансов водохранилищ и прилегающей суши обусловливает формирование местных ветров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положительную), изменение погоды.

2.3 Экологические проблемы ядерной энергетики

До недавнего времени ядерная энергетика рассматривалась как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим их воздействием на окружающую среду. К преимуществам АЭС относится также возможность их строительства, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами (0,5 кг ядерного топлива позволяет получать столько же энергии, сколько дает сжигание 1000 тонн каменного угля).

До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков их эксплуатации.

При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС такой же мощности, работающей на угле.

После 1986 г. главную экологическую опасность АЭС стали связывать с возможностью аварий на них. К наиболее крупным авариям такого плана относится авария, случившаяся на Чернобыльской АЭС. По различным данным, суммарный выброс продуктов деления от содержащихся в реакторе ЧАЭС составил от 3,5% (63 кг) до 28% (50т) (для сравнения бомба, сброшенная на Хиросиму, дала 740 г радиоактивного вещества).

В результате аварии на ЧАЭС радиоактивному загрязнению подверглась территория в радиусе более 2 тыс. км, охватившая более 20 государств. В пределах бывшего СССР пострадало

11 областей, где проживает 17 млн. человек. Общая площадь загрязненных территорий превышает 8 млн. га.

Кроме страшных последствий аварийных ситуаций на АЭС можно назвать следующие их воздействия на окружающую среду:

разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т.п.) в местах добычи руд, особенно при открытом способе добычи;

изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для АЭС мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию;

изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие естественные источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у водных обитателей;

не исключено попадание радиоактивного загрязнения в атмосферный воздух, воду, почву в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

Заключение

Надежное и безопасное энергообеспечение является основополагающим условием жизнедеятельности и развития общества. Однако в последнее время мировое потребление энергии стало соизмеримо с запасами горючих ископаемых - базой современной энергетики. Почти 90 % используемых в настоящее время топливно-энергетических ресурсов для выработки энергии составляют ископаемые виды топлива. Если запасы угля в количественном отношении не вызывают тревоги, то перспектива истощения нефтяных пластов, и меньшей степени природного газа, заставляет серьезно надуматься о последствиях.

Нефть остается главным видом топлива в общем энергопотреблении.

Природный газ: Рост использования газа происходит, в основном, за счет сокращения потребления атомной энергии и угля. Основную долю в приросте спроса на газ составляют новые электростанции. Развитие новых технологий в области создания газовых турбин комбинированного цикла обуславливает перестройку электроэнергетики в пользу газа.

Широкому применению газа способствует также его экологические преимущества, выражающиеся в значительно меньшем по сравнению с нефтью и углем объеме выбросов вредных веществ в атмосферу.

Мировой спрос на уголь растет более низкими темпами, чем общее потребление первичных энергоносителей. Почти весь прирост спроса приходится на электроэнергетику.

Производство электроэнергии на АЭС растет за счет строительства новых электростанций.

Мировое потребление гидроэнергии возрастает (особенно в развивающихся странах).

Использование других возобновляемых источников энергии (геотермальная, солнечная, ветровая, приливов, волн, производимая на базе биомассы и отходов) растет наиболее высокими темпами. Расширение использования возобновляемых источников обусловлено продолжением процесса изменения климата Земли, однако по уровню цен они все еще не могут конкурировать с ископаемыми видами топлива, и их развитие в дальнейшем будет во многом зависеть от различных форм финансовой поддержки со стороны правительств.

Таким образом, ископаемые виды топлива преобладают в мировом потреблении первичных топливно-энергетических ресурсов. Мировое потребление энергии и выбросы углекислого газа (С02) неуклонно возрастают; выработка превышает Киотскую договоренность в области экологии.

Литература

1. Основы энергосбережения: Курс лекций/Свидерская О.В.- 3-е издание - Мн.:Академия управления при Президенте Республики Беларусь, 2004. - 296 с.

2. http://mgplm.org/publ/1-1-0-4

3. http://literature.agrodelo.com/ru/science_literature/ecology/5326/5387/5436/

Размещено на Allbest.ru


Подобные документы

  • Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат [430,1 K], добавлен 28.10.2013

  • Создание институциональной базы в арабских странах. Инвестиционные возможности для развития возобновляемой энергетики. Стратегическое планирование развития возобновляемых источников энергии стран Ближнего Востока. Стратегии развития ядерной энергии.

    курсовая работа [4,7 M], добавлен 08.01.2017

  • Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат [3,4 M], добавлен 04.06.2015

  • Перспективы использования возобновляемых источников энергии в Казахстане и проблемы, связанные с их использованием. Удельные мощности разных типов электростанций. Выбор фотопреобразователей. Преимущества автономных систем. Инвестиционные затраты.

    дипломная работа [1,5 M], добавлен 31.01.2014

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Виды электростанций, их особенности, достоинства и недостатки, влияние на окружающую среду. Источники энергии для их деятельности. Развитие и проблемы ядерной энергетики. Принципы концепции безопасности атомных ЭС. Допустимые и опасные дозы облучения.

    презентация [963,6 K], добавлен 06.03.2015

  • Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа [82,0 K], добавлен 23.04.2016

  • Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа [487,3 K], добавлен 15.12.2011

  • Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат [253,9 K], добавлен 30.05.2016

  • Изучение истории рождения энергетики. Использование электрической энергии в промышленности, на транспорте, в быту, в сельском хозяйстве. Основные единицы ее измерения выработки и потребления. Применение нетрадиционных возобновляемых источников энергии.

    презентация [2,4 M], добавлен 22.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.