Промысловая подготовка нефти

Характеристика химического состава нефти и нефтяных эмульсий. Деэмульгаторы, применяемые для разрушения нефтяных эмульсий. Способы обезвоживания и обессоливания нефти. Трубчатые огневые подогреватели нефти. Обслуживание блоков нагрева по время работы.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 07.12.2016
Размер файла 139,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СПРАВОЧНОЕ ПОСОБИЕ

ОПЕРАТОР ОБЕЗВОЖИВАЮЩЕЙ И ОБЕССОЛИВАЮЩЕЙ УСТАНОВКИ,

ОПЕРАТОР ТЕХНОЛОГИЧЕСКИХ УСТАНОВОК,

ОПЕРАТОР ТОВАРНЫЙ,

МАШИНИСТ ТЕХНОЛОГИЧЕСКИХ НАСОСОВ,

СЛЕСАРЬ КИПиА,

ЛАБОРАНТ ХИМ. АНАЛИЗА

г.Нижневартовск

Химический состав нефти

Главные элементы, из которых состоит нефть, - углерод и водород. Содержание углерода и водорода в различных нефтях колеблется в сравнительно узких пределах и составляет в среднем для углерода 83,5-87% и для водорода 11,5-14%.

Наряду с углеродом и водородом во всех нефтях присутствуют сера, кислород и азот. Азота в нефтях мало (0,001-0,3%), содержание кислорода колеблется в пределах от 0,1 до 1 %, однако в некоторых высокосмолистых нефтях оно может быть и выше.

Значительно отличаются друг от друга нефти по содержанию среды. В нефтях многих месторождений серы сравнительно мало (0,1-1%). Но доля сернистых нефтей с содержанием серы от 1 до 3% в последнее время значительно возросла.

В зависимости от содержания серы нефти подразделяются на малосернистые (содержание серы меньше 0,5%), сернистые (0,5-2%) и высокосернистые (более 2%).

В очень малых количествах в нефтях присутствуют и другие элементы, главным образом металлы - ванадий, никель, железо, магний, хром, титан, кобальт, калий, натрий и др. Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента.

Из углеводородов в нефтях преобладает либо углеводороды метанового (парафинового), либо нафтенового ряда. Содержание углеводородов ароматического ряда значительно меньше.

Простейшим соединением углеводородов парафинового ряда является метан. Молекула метана состоит из одного атома углерода и четырех атомов водорода (СН4). Следующими соединениями углеводородов парафинового ряда являются этан С2Н8,пропан С3Н8, бутан С4Н10 и т.д. Таким образом, каждый последующий член ряда отличается от предыдущего на группу СН2. Состав этих веществ можно выразить одной общей формулой. Если число атомов углерода в молекуле принять за n, то число атомов водорода в ней равно 2n+2, а общая формула углеводородов парафинового ряда будет СnН2n+2.

Углеводороды от метана до бутана включительно при нормальных условиях, т.е. при давлении 0,1 МПа и температуре t=0°С, находятся в газообразном состоянии. Их этих углеводородов в основном и состоят нефтяные газы.

Углеводороды, содержащие от 5 до 17 атомов углерода в молекуле (С5Н12 - С17Н36), при нормальных условиях - жидкие вещества. Эти соединения входят в состав нефти. углеводороды, в молекулах которых имеется свыше 17 атомов углерода, - твердые вещества.

Молекулы углеводородов нафтенового и ароматического рядов имеют циклическое строение. Углеводороды нафтенового ряда отличаются по составу от соответствующих углеводородов метанового ряда тем, что в их молекулах на два атома водорода меньше и общая формула углеводородов нафтенового ряда имеет вид СnН2n. Из углеводородов нафтенового ряда в нефтях были найдены циклобутан (С4Н8), циклопентан (С5Н10), циклогексан (С6Н12) и др.

По физическим и химическим свойствам углеводороды нафтенового ряда близки к метановым плотность их приблизительно средняя между метановыми и ароматическими углеводородами.

Сепарационные установки

В процессе подъема жидкости из скважин и транспортирования ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление в системе сбора, и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается, и поток в нефтегазосборных коллекторах, включая и верхние участки НКТ, состоит из двух фаз: газовой и жидкой. Такой поток называется двухфазным или нефтегазовым потоком.

Жидкая фаза может, в свою очередь, состоять из нефти и пластовой воды, содержание которой в потоке может изменяться от нуля до значительных величин. Следовательно, в случае содержание воды в продукции скважин мы имеем дело с трехфазным или нефтеводогазовым потоком, который состоит из нефти, газа и воды.

Нефть и выделившийся из нее газ при нормальных условиях не могут храниться или транспортироваться вместе. Поэтому на нефтяных месторождениях совместный сбор нефти и газа и совместное транспортирование их осуществляют только на определенные экономически целесообразные расстояния, а затем и выделившийся газ транспортируют раздельно.

Процесс отделения газа от нефти называется сепарацией. Аппарат, в котором происходит отделение газа от жидкой продукции скважин, называют нефтегазовым сепаратором. Однако в некоторых случаях в нефтегазовых сепараторах осуществляется к тому же отделение и сброс свободной воды. В этом случае нефтегазовый сепаратор называют нефтеводогазосепаратором или трехфазным сепаратором.

Вывод отсепарированного газа из нефтегазовых сепараторов и раздельный сбор его осуществляется в различных пунктах системы сбора и центральных пунктах сбора подготовки нефти, газа и воды. Каждый такой пункт вывода отсепарированного газа называется ступенью сепарации газа. Ступеней сепарации может быть несколько, и окончательное отделение нефти от газа завершается в концевых сепараторах или в резервуарах под атмосферным давлением.

Многоступенчатая сепарация применяется при высоких давлениях на устье скважин для лучшего разделения нефти и газа при последовательно снижающихся давлениях в сепараторах. Нефтегазовую смесь из скважины направляют сначала в сепаратор высокого давления, в котором из нефти выделяется основная масса газа, состоящего главным образом из метана и этана.

Из сепаратора высокого давления нефть поступает в сепараторы среднего и низкого давления для окончательного отделения от газа.

Сепараторы первой ступени в зависимости от конкретных условий на месторождении могут быть рассредоточены в нескольких пунктах по его территории или сосредоточены наряду с остальными ступенями сепарации на центральном пункте сбора и подготовки нефти, газа и воды. В последнем случае на месторождении не строятся газосборные трубопроводы. Транспортирование же газа всех ступеней сепарации от ЦПС до газокомпрессорной станции или до газаперерабатывающего завода обычно осуществляется по одному газопроводу.

Сепараторы, применяемые на нефтяных месторождениях, условно подразделяются на следующие категории:

1) по назначению - замерно - сепарирующие

2) по геометрической форме и положению в пространстве - цилиндрические, вертикальные, горизонтальные и наклонные

3) по характеру проявления основных сил - гравитационные и центробежные (гидроциклонные)

4) по рабочему давлению - высокого (6,4 МПа и более), среднего (2,5-6,4 МПа), низкого (0,6-2,5 МПа) давления и вакуумные

5) по числу обслуживаемых скважин - индивидуальные и групповые

6) по числу ступеней сепарации - первой, второй, третьей ступени и т.д.

7) по числу разделяемых фаз - двухфазный (нефть+газ), трехфазный (нефть+газ+вода)

Вертикальные сепараторы имеют 4 секции: основная сепарационная секция, осадительная секция, секция отбора нефти, каплеуловительная секция.

Основная сепарационная секция служит для интенсивного выделения газа из нефти. на работу сепарационной секции большое влияние оказывают степень снижения давления, температуры в сепараторе, физико-химические свойства нефти, особенно ее вязкость, конструктивное оформление ввода продукции скважин в сепаратор.

Осадительная секция, в которой происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационной секции. Для более интенсивного выделения пузырьков газа из нефти ее направляют тонким слоем по наклонным плоскостям, увеличивая тем самым длину пути движения нефти, т.е. эффективность ее сепарации.

Секция сбора нефти, занимающая самое нижнее положение в сепараторе и предназначенная как для сбора, так и для вывода нефти из сепаратора. Нефть может находиться здесь или в однофазном состоянии, или в смеси с газом - в зависимости от эффективности работы сепарационной и осадительной секций и времени пребывания нефти в сепараторе.

Каплеуловительная секция, расположенная в верхней части сепаратора, служит для улавливания мельчайших капелек жидкости, уносимых потоком газа.

В составе групповых замерных установок применение вертикальных аппаратов обеспечивает большую точность замеров расхода жидкости в широком диапазоне дебитов скважин, включая малодебитные.

Однако вертикальные сепараторы имеют и существенные недостатки:

1) меньшая пропускная способность по сравнению с горизонтальными при одном и том же диаметре аппарата

2) меньшая устойчивость процесса сепарации при поступлении пульсирующих потоков

3) меньшая эффективность сепарации

Обслуживание вертикальных сепараторов сводится к поддержанию в них установленного давления и исправного состояния регулятора уровня, предохранительного клапана, манометра. В случае использования уровнемерных стекол в замерном сепараторе, особенно при вязких нефтях и низких температурах, требуется время от времени промывать соляровым маслом загрязненные стекла, отключая их соотвтствующими кранами от сепаратора.

Горизонтальные сепараторы имеют большую пропускную способность по газу и жидкости, чем вертикальные. По некоторым данным, пропускная способность горизонтального сепаратора при одинаковых размерах примерно в 2,5 раза больше, чем вертикального. Это объясняется тем, что в горизонтальном сепараторе капли жидкости под действием силы тяжести падают вниз, перепендикулярно к потоку газа, а не навстречу, как это происходит в вертикальных сепараторах.

Большинство горизонтальных сепараторов изготавливается из одной горизонтальной емкости со сферическими днищами (одноемкостные сепараторы), иногда применяют двухъемкостные горизонтальные сепараторы.

Область применения горизонтальных сепараторов весьма обширна. Они используются для оснащения дожимных насосных станций, для первой, второй и третьей ступеней сепарации на центральных пунктах сбора и подготовки нефти, газа и воды. Пропускная способность горизонтальных сепараторов, применяемых для первой, второй и третьей ступеней сепарации, может достигать 30000 т/сут по жидкости на каждой ступени.

Горизонтальные сепараторы широко применяются также для отделения и сбора свободной воды из продукции скважин на первой или последующих ступенях сепарации, что исключает попадание значительных объемов воды на установку по подготовке нефти. В этом случае они выполняют роль трехфазных сепараторов.

Горизонтальные сепараторы некоторых конструкций для повышения пропускной способности и улучшения качества сепарации нефти оборудуются гидроциклонами. Отделение газа от нефти в гидроциклонах происходит за счет центробежных сил. Нефть, имеющая большую плотность, отбрасывается к стенкам гидроциклона, а газовый вихрь, вращаясь, движется в центре. Из гидроциклона нефть и газ отдельно поступает в емкости.

Газонасыщенная нефть поступает на сливные полки и далее по стенке в нижнюю часть емкости. Сливные полки уменьшают пенообразование. Движение нефти тонким слоем по полкам способствует отделению нефти и газа. В емкости монтируется механический регулятор уровня, связанный с исполнительным механизмом - заслонкой, установленной после сепаратора на нефтяной линии. Регулятор обеспечивает в емкости необходимый уровень жидкости, предотвращающий прорыв свободного газа в нефтяной коллектор.

Наибольшей пропускной способностью по жидкости и газу характеризуются горизонтальные сепараторы, в которые жидкость и газ, предварительно отделенные в подводящих трубопроводах, вводятся раздельно. Такие аппараты получили название сепараторов с предварительным отбором газа. Работает данный сепаратор следующим образом. Нефтегазовая смесь подводится к корпусу сепаратора по наклонным участкам трубопроводов. Уклон трубопровода может колебаться в пределах от 30 до 40°, а трубопровода - от 10 до 15°. К трубопроводу вертикально привариваются 3-4 газоотводных трубки диаметром 50-100 мм. Верхние концы этих трубок приварены к сборному коллектору (депульсатору) газа, подводящему этот газ к корпусу калеуловителя, в котором устанавливаются выравнивающая поток газа перфорированная перегородка и жалюзийная кассета. Капельки нефти, уносимые основным потокам газа по сборному коллектору, проходя жалюзийную кассету (или любую другую), прилипают к стенкам жалюзи и, скапливаясь на них, в виде сплошной пленки стекают вниз в корпус сепаратора. Из корпуса каплеуловителя газ направляется под собственным давлением 0,6 МПа на газоперерабатывающий завод. (ГПЗ).

Нефть, освобожденная от основной массы газа в трубопроводе, поступает в корпус сепаратора через нижний патрубок ввода, в котором установлены сплошная перегородка, успокоитель уровня и две наклонные полки, увеличивающие путь движения нефти и способствующие выделению из нефти окклюдированных пузырьков газа, не успевших скоалесцироватиься и выделиться в наклонном трубопроводе. Давление выделившегося из нефти газа повышают при помощи эжектора, затем газ транспортируется на ГПЗ.

Для регулирования вывода нефти из сепаратора имеется датчик уровнемера поплавкового типа и исполнительным механизмом.

Раздельный ввод газа и жидкости в аппарат имеет ряд преимуществ. При совместном вводе нефтегазового потока в сепаратор с перепадом давления и перемешиванием фаз количество в нефти пузырьков газа размером 2-3 мкм примерно в 4 раза больше, чем в случае раздельного ввода нефти и газа в аппарат без перепада давления. Пузырьки газа таких размеров обычно находятся во взвешенном состоянии и не успевают выделиться из нефти за время ее движения в сепараторе. Таким образом, в сепараторах с раздельным вводом жидкости и газа унос свободного газа вместе с нефтью в несколько раз меньше, чем в сепараторах с совместным вводом продукции, и обычно не превышает 1% от объема жидкости.

При раздельном вводе нефти и газа резко уменьшается также объем пены, образующейся в сепараторе в результате удержания части газа и жидкости во взвешенном состоянии, что особенно важно при подготовке нефтей, склонных к пенообразованию может привести к заполнению газового пространства пеной. При заполнении сепаратора пеной отказывает в работе регулятор уровня и пена поступает как в газопровод, так и в выкидную линию для жидкости.

В настоящее время разработан ряд блочных сепараторов типа УБС с предварительным отбором газа на пропускную способность от 1500 до 16000 м3/сут. Объем емкости составляет от 30 до 160 м3. Технические данные сепараторов типа УБС приведены в таблице 1.

Таблица 1.

Модификация установки

Пропускная способность по сырью (м3/сут), не более

Рабочее давление (МПа), не более

Газовый фактор нефти (м3/м3), не более

Масса (кг), не более

УБС-1500/6

1500

0,6

60

10000

УБС-3000/6

3000

0,6

60

15000

УБС-6300/6

6300

0,6

60

25000

УБС-6300/16

6300

1,6

120

31000

УБС-10000/6

10000

0,6

60

3000

УБС-10000/16

10000

1,6

120

38000

УБС-16000/6

16000

0,6

60

40000

УБС-16000/16

16000

1,6

120

50000

Трехфазные сепараторы. По мере роста обводненности продукции скважин, поступающей в сепараторы, начинают преобладать капли воды больших размеров, которые могут легко коалесцировать и отделяться в виде свободной воды.

Количество выделившейся из нефтяной эмульсии свободной воды зависит от физико-химических свойств нефти и воды, температуры потока, продолжительности транспортирования, интенсивности перемешивания потока (для поступления в сепаратор) и от многих других причин. Предварительная подача реагента в поток на определенном удалении от сепарационных установок способствует выделению свободной воды из эмульсии.

В нефтепромысловой практике отделяемую свободную воду стремятся сбросить как можно раньше - до поступления продукции на установки подготовки нефти, так как нагрев этой воды связан с большим расходом теплоты. Предварительный сброс свободной воды осуществляется в трехфазных сепараторах. В настоящее время разработаны трехфазные сепараторы для работы на первой и последующих ступенях сепарации. Особенностью таких аппаратов является использование в одной емкости двух отсеков: сепарационного и отстойного, сообщающихся между собой через каплеобразователь.

Сепаратор работает следующим образом. Смесь нефти, воды и газа по потрубку поступает в сепарационный отсек. Отсепарированный газ подается на ГПЗ, а смесь нефти и воды с небольшим количеством газа из сепарационного отсека по каплеобразователю перетекает в отстойный отсек, где нефть отделяется от воды и газа. Нефть по верхнему патрубку отводится на УПН, вода через исполнительный механизм, работающий за счет датчика регулятора уровня поплавкового типа, сбрасывается из сепаратора в резервуар - отстойник или под собственным давлением транспортируется на блочную кустовую насосную станцию (БКНС). Если в трехфазный сепаратор поступает нефть в виде стойкой эмульсии, то в каплеобразователь подводится с УПН горячая отработанная вода, содержащая поверхностно-активные вещества (ПАВ) для интенсификации разрушения этой эмульсии.

Эффективность работы сепаратора любого типа характеризуется следующими 2 основными показателями:

1. количеством капельной жидкости, уносимой потоком газа из каплеуловительной секции;

2. количеством пузырьков газа, уносимых потоком нефти из секции сбора нефти. Чем меньше эти показатели, тем эффективнее работа нефтегазового сепаратора. В хорошо сконструированных нефтегазовых сепараторах обычно унос капелек жидкости вместе с газовым потоком не превышает 15 см3 на 1000 м3 отсепарированного газа, или около 10 г жидкости на 1000 кг продукции, поступающей в сепаратор.

По такой технологической схеме сконструированы и серийно изготовляются автоматизированные блочные установки предварительного сброса пластовой воды типа УПС.

Промысловая подготовка нефти. Нефтяные эмульсии и условия их образования

Вода в нефти появляется в результате поступления к забою скважины подстилающей воды, закачиваемой в пласт с целью поддержания давления. При движении нефти и пластовой воды по стволу скважины и нефтесборным трубопроводам происходит их взаимное перемешивание и дробление. Процесс дробления одной жидкости в другой называют диспергированием. В результате диспергирования одной жидкости в другой образуются эмульсии.

Эмульсией называется такая система двух взаимно нерастворимых или вполне растворимых жидкостей, в которых одна содержится в другой во взвешенном состоянии в виде многочисленных капель (глобул). Жидкость, в которой распределены глобулы, называется дисперсионной средой, а вторая жидкость, распределенная в дисперсионной среде, - дисперсионной фазой.

Нефтяные эмульсии бывают двух типов: «вода в нефти» и «нефть в воде». Почти все эмульсии, встречающиеся при добыче нефти, являются эмульсиями типа «вода в нефти». Содержание пластовой воды в таких эмульсиях колеблется от десятых долей процента до 90 % и более.

Для образования эмульсии недостаточно только перемешивания двух несмешивающихся жидкостей. Необходимо еще наличие в нефти особых веществ - пригодных эмульгаторов. Такие природные эмульгаторы в том или ином количестве всегда содержатся в пластовой нефти. К ним относятся асфальтены, смолы, нефтерастворимые органические кислоты и такие мельчайшие механические примеси, как ил и глина.

Адсорбируясь на поверхности эмульсионных глобул, они образуют своеобразную броню, препятствующую слиянию капель воды.

Образованием пленки на поверхности глобулы воды объясняется «старение» эмульсии. Под процессом старения понимается упрочение пленки эмульгатора с течением времени. По истечении времени определенного времени пленки вокруг воды становятся очень прочными и трудно поддаются разрушению.

В зависимости от размера капелек воды и степени старения нефтяные эмульсии разделяются на легкорасслаивающиеся, средней стойкости и стойкие.

На стойкость водонефтяных эмульсий влияют и некоторые другие факторы: температура, содержание парафина, условия образования эмульсии, количество и состав эмульгированной воды.

Стойкость эмульсии при добыче нефти скважинными штанговыми насосами ниже, чем при эксплуатации погружными электроцентробежными насосами.

Основные физико-химические свойства нефтяных эмульсий

Для правильного выбора метода разрушения нефтяных эмульсий важно знание их основных физико-химических свойств.

Дисперсность эмульсии - это степень раздробленности дисперсной фазы в дисперсионной среде. Дисперсность - основная характеристика эмульсии, определяющая их свойства. Размеры капелек дисперсной фазы в нефтяных эмульсиях изменяются от 0,1 до 100 мкм (10-5-10-2см).

Вязкость эмульсии зависит от вязкости самой нефти, температуры, при которой получается эмульсия, количества воды, содержащейся в нефти, степени дисперсности, присутствия механических примесей. Вязкость нефтяных эмульсий не обладает аддитивным свойством, т.е. вязкость эмульсии не равна сумме вязкости нефти и воды.

С увеличением обводненности до определенного значения вязкость эмульсии возрастает и достигает максимума при критической обводненности, характерной для данного месторождения. При дальнейшем увеличении обводненности вязкость эмульсии резко уменьшается. Критическое значение коэффициента обводнения называется точкой инверсии, при которой происходит обращение фаз, т.е. эмульсия типа «вода в нефти» превращается в эмульсию типа «нефть в воде». Значение точки инверсии для разных месторождений колеблется от 0,5 до 0,95.

Плотность эмульсии можно рассчитать, если известны плотность нефти и воды и их содержание в эмульсии, по следующей формуле:

Электрические свойства эмульсий. Нефть и вода в чистом виде - хорошие диэлектрики. Электропроводность нефти колеблется от 0,5*10-6 до 0,5*10-7 Ом*м-1, пластовой воды - от 10-1 до 10 Ом*м-1. Даже при незначительном содержании в воде растворенных солей или кислот электропроводность ее увеличивается в десятки раз. Поэтому электропроводность нефтяной эмульсии обусловливается не только количеством содержащейся воды и степенью ее дисперсности, но и количеством растворенных в этой воде солей и кислот.

В нефтяных эмульсиях, помещенных в электрическом поле, капельки воды располагаются вдоль его силовых линий, что приводит к резкому увеличению электропроводности этих эмульсий. Это объясняется тем, что капельки чистой воды имеют приблизительно в 40 раз большую диэлектрическую проницаемость, чем капельки нефти (є=2).

Свойство капелек воды располагаться в эмульсиях вдоль силовых линий электрического поля и послужило основной причиной использования этого метода для разрушения нефтяных эмульсий.

Устойчивость нефтяных эмульсий и их старение. Самым важным показателем для нефтяных эмульсий является их устойчивость (стабильность), т.е. способность течение определенного времени не разрушаться и не разделяться на нефть и воду.

На устойчивость нефтяных эмульсий большое влияние оказывают дисперсность системы; физико-химические свойства эмульгаторов, образующих на поверхности раздела фаз адсорбционные защитные оболочки; температура смешивающихся жидкостей.

Деэмульгаторы, применяемые для разрушения нефтяных эмульсий

Наряду с мероприятиями по снижению образования эмульсий большое влияние уделяется разрушению образовавшихся эмульсий с последующим отделением нефтяной фазы от воды. Для разрушения нефтяных эмульсий широко применяются различные химические реагенты - эмульгаторы, которые в отличие от природных эмульгаторов способствуют значительному снижению стойкости нефтяных эмульсий.

В качестве реагентов - деэмульгаторов используются поверхностно-активные вещества (ПАВ).

Деэмульгаторы должны удовлетворять следующим основным требованиям: хорошо растворяться в одной из фаз эмульсии (в нефти или воде) иметь достаточную поверхностную активность, чтобы вытеснить с границы раздела «нефть-вода» естественные эмульгаторы, образующие защитную пленку на капельках воды; обеспечивать достаточное снижение межфазного натяжения на границе фаз «нефть-вода» при малых расходах реагента; не коагулировать в пластовых водах; быть инертными по отношению к металлам.

Одновременно с этим деэмульгаторы должны быть дешевыми, транспортабельными, не должны изменять своих свойств при изменении температуры, ухудшать качество нефти после обработки и обладать определенной универсальностью, т.е. разрушать эмульсии различных нефтей и вод.

Воздействие деэмульгатора на нефтяную эмульсию основано на том, что деэмульгатор, адсорбируясь на поверхности раздела фаз «нефть-вода», вытесняет и замещает менее поверхностно-активные природные эмульгаторы. Пленка, образуемая деэмульгатором, не прочная. В результате этого мелкие диспергированные капельки воды, сливаясь, образуют большие капли. Процесс слияния капелек воды называется коалесценцией.

По характеру поведения в водных растворах деэмульгаторы делятся на ионогенные и неионогенные. Первые в растворах диссоциируют на катионы и анионы, вторые ионов не образуют. Исследования, проведенные в СССР и за рубежом, показали, что наилучшим деэмульгирующим воздействием обладают неионогенные вещества. Расход неионогенных деэмульгаторов в несколько десятков раз ниже, чем при применении ионогенных веществ.

Неионогенные ПАВ в настоящее время находят самое широкое применение в процессах обезвоживания и обессоливания нефти. Их расход исчисляется граммами - от 5-10 до 50-60 г на 1 т нефти. Это значительно снижает стоимость транспортировки деэмульгатора и общую стоимость процессов обезвоживания и обессоливания. Неионогенные ПАВ не реагируют с солями, содержащимися в пластовой воде, и не вызывают образования осадков. При использовании неионогенных ПАВ содержание нефти в сточных пластовых водах значительно ниже, чем при обработке эмульсий ионогенными ПАВ.

Из неионогенных деэмульгаторов широкое применение при подготовке нефти нашли импортные деэмульгаторы - дисолваны 4411 4490, сепаролы 25,29 и 5084, прохинор, доуфакс, реагент R-11, прогалиты, прогамины.

В ближайшие годы предусматривается массовое внедрение отечественных деэмульгаторов (дипроксамин-157, проксанол-305, проксамин НР-71, реапон и др).

При работе с деэмульгаторами всегда следует помнить, что для предотвращения их загустевания при низких (минусовых) температурах окружающего воздуха в качестве разбавителя в них добавляется до 35% метилового спирта, который является высокотоксичной жидкостью, поэтому при обращении с деэмульгатором нужно соблюдать особые меры предосторожности.

Необходимость обезвоживания нефти на нефтяных месторождениях. Требования к качеству подготовленной нефти

Как уже отмечалось, нефть, добываемая не нефтяных месторождениях, содержит значительное количество пластовой, чаще всего высокоминерализованной воды. Нефтяные месторождения обычно удалены от нефтеперерабатывающих заводов на большие расстояния. Так, например, основное количество нефти, добываемой для ее переработки в европейскую часть СССР. В этих условиях перекачка вместе с нефтью огромных объемов пластовой воды приводит к большим убыткам.

Необходимость обезвоживания нефти на промыслах обусловливается образованием стойких эмульсий, трудно поддающихся разрушению на нефтеперерабатывающих заводах, а также предохранением магистральных нефтепроводов от коррозии.

При перекачке необезвоженной нефти по магистральному нефтепроводу в нижней части его может скапливаться коррозионно-активная минерализованная пластовая вода, приводящая этот трубопровод в аварийное состояние в сравнительно короткое время.

Обезвоживание нефти на промыслах имеет важное значение для охраны окружающей среды. Пластовая вода, отделенная от нефти на нефтяном промысле, закачивается обратно в нефтесодержащие горизонты для поддержания в них технологически необходимого пластового давления, чем исключается использование для этих целей огромных количеств пресной воды, запасы которой на земном шаре не безграничны.

Утилизация же пластовых высокоминерализованных вод в районах расположения нефтеперерабатывающих заводов всегда сопровождается опасностью засолонения вблизи рек, загрязнение которых отрицательно сказывается также на состоянии морей, в которые эти реки впадают.

Таблица 2

Показатели качества подготовленной воды

Группа нефти

I

II

III

Массовая доля остаточной воды в нефти, не более,%

0,5

1

1

Содержание в нефти хлористых солей (мг/л), не более

100

300

1800

Массовая доля механических примесей в нефти, не более,%

0,05

0,05

0,05

Давление насыщенных паров нефти (Па), не более

66650

66650

66650

Качество нефти, поставляемой не нефтеперерабатывающие заводы, в Советском Союзе регламентируется специальным ГОСТом, который устанавливает три группы нефтей в зависимости от степени их подготовки (табл.2).

В составе I группы выделяется подгруппа нефти с содержанием хлористых солей до 40 мг/л и массовой долей воды до 0,5%.

Способы обезвоживания и обессоливания нефти

Существуют следующие основные методы разрушения нефтяных эмульсий: гравитационный отстой; центрифугирование; фильтрация; термохимический метод и деэмульсация нефти с применением электрических полей.

Гравитационный отстой происходит за счет разности плотностей пластовой воды (1050-1200 кг/м3) и нефти (790-960 кг/м3) в отстойниках или резервуарах. Гравитационный отстой может осуществляться без нагрева эмульсии, когда нефть и вода не подвергаются сильному перемешиванию, в нефти практически отсутствуют эмульгаторы (особенно асфальтены) и обводненность нефти достаточно велика (более 50-60%). Гравитационный отстой в чистом виде (т.е. без нагрева и применения деэмульгаторов) применяется очень редко.

Этот способ предшествует окончательной обработке нефти. Если в эмульсию ввести большое количество воды при одновременном перемешивании, то происходит диспергирование нефти в воде, т.е. обращение фаз, и при создании определенных условий - немедленное расслаивание нефти и воды. Капли воды, сливаясь, оседают. Вымывание капель в воде происходит тем быстрее, чем вязкость нефти больше вязкости воды. При этом сокращается время отстоя. Этим способом можно отделять основную массу пластиковой воды от нефти.

При применении описанного способа можно исключить совместное транспортирование большого количества балласта с нефтью и осуществить без значительных капиталовложений подачу ее на большие расстояния до центральных узлов подготовки нефти.

Характерной особенностью способа следует считать почти полное исключение расхода теплоты на технологические нужды. Принципиальную схему проведения данного процесса можно представить в след.виде. Нефтяная эмульсия из промежуточной емкости системы сбора нефти поступает на прием насосов, куда в необходимом количестве подаются деэмульгатор и пластовая вода для осуществления обращения фаз. Обращенная эмульсия поступает в отстойники, в которых отстаивается основное количество пластовой воды. Отстоявшаяся нефть при обводненности 5-6% под остаточным давлением отводится по трубопроводам для последующей обработки. Отстоявшаяся вода с реагентом, необходимые для обращения фаз эмульсии, вновь поступают на смешивание со свежей эмульсией, избыток пластовой воды из отстойника сбрасывается в канализационные коллекторы для последующей очистки и закачки в поглощающие или продуктивные горизонты.

Для деэмульсации используется также центрифугирование. Нефтяная эмульсия подается в центрифугу, в которой размещается быстро вращающийся направляющий аппарат, придающий ей определенное направление движения. Благодаря центробежной силе капли воды, как более тяжелые, приобретают большую скорость и стремятся выйти из связанного состояния, концентрируясь и укрупняясь вдоль стенок аппарата и стекая вниз. Обезвоженная нефть и вода отводятся по самостоятельным трубам.

Фильтрация. В практике эксплуатации нефтяных месторождений при движении в промысловых коллекторах наблюдается расслаивание нефтяных эмульсий при большой обводненности нефти, а иногда при малой, если эмульсия нестойкая. При этом нередко во взвешенном состоянии, что характерно для эмульсий с незначительной разностью плотностей. Для эмульсации таких нефтей иногда пользуются способом фильтрации, основанным на явлении селективного смачивания. Фильтрующее вещество должно отвечать след. требованиям: иметь плотность и упругость, достаточные для того, чтобы глобулы воды при прохождении растягивались и разрушались; обладать хорошей смачиваемостью, благодаря чему осуществляется сцепление молекул фильтрующего вещества и воды, что обусловливает изменение относительной скорости движения эмульсии и, как следствие, разрыв оболочки глобул воды.

Фильтрующие вещества должны иметь противоположный по знаку заряд, чем у глобул воды. Тогда при прохождении эмульсии через фильтр происходит снятие заряда с глобул воды, чем устраняется отталкивающая сила между ними. Укрупнившиеся капли воды стекают вниз, а нефть, свободно пройдя фильтр, выводится с установки. В качестве фильтрующих веществ используются такие материалы, как гравий, битое стекло, древесные и металлические стружки, стекловата и т.д. Особенно успешно применяется стекловата, обладающая хорошей смачиваемостью водой и несмачиваемостью нефтью, большой устойчивостью и долговечностью.

Подогретая до 70-90°С эмульсия прокачивается через фильтры. При прохождении эмульсии через фильтры отделившиеся капли воды укрупняются и стекают вниз, откуда сбрасываются в канализацию. Нефть из верхней части колонны либо последовательно подаются еще в одну колонну (если это требуется по условиям деэмульсации), либо через группу сырьевых теплообменников отводится с установки в емкость, либо поступает на обессоливание.

Термохимическое обезвоживание и обессоливание. Процессы обезвоживания и обессоливания технологически идентичны и сводятся к разрушению глобул водонефтяной эмульсии и созданию благоприятных условий для их слияния и последующего отстоя.

На промыслах Советского Союза наиболее распространено разрушение эмульсий термохимическими способами. Такое широкое распространение эти способы получили благодаря присущим им таким преимуществам, как возможность менять деэмульгаторы без замены оборудования и аппаратуры, предельная простота способа, нечувствительность режима к любым колебаниям содержания воды.

Недостатки: большие затраты на деэмульгаторы, через большие потери легких фракций нефти от испарения при отстаивании подогретой эмульсии в обычных негерметизированных резервуарах, повышенный расход теплоты, обусловленный большими потерями его в окружающую среду.

Термохимические установки, работающие под атмосферным давлением, следует признать самыми простыми в нефтедобывающей промышленности.

Собранная на промысле и освобожденная от газа нефтяная эмульсия по сборным коллекторам поступает в приемные резервуары, откуда насосами подается через подогреватели в отстойные резервуары. Перед поступлением на подогреватели в эмульсию вводится деэмульгатор, а иногда и рециркулируемая отстойная вода. Деэмульгатор подается дозировочным насосом, допускающим регулирование и обеспечивающим равномерное поступление его в нефть. Дозирование и учет деэмульгатора осуществляются при помощи мерников, однако в последнее время мерники все чаще заменяют приборами автоматического регулирования расхода.

На термохимических установках для подогрева нефтяной эмульсии применяют различные подогреватели, в частности трубчатые подогреватели с плавающей головкой, подогреватели типа «труба в трубе».

Предельно допускаемое давление в этих резервуарах 2000 Па. Отстой нефти в резервуарах можно осуществлять по трем схемам.

1. с периодическим отключением отдельных резервуаров на отстой по мере их заполнения. Продолжительность цикла определяется временем для отстоя, емкостью резервуаров, их числом, количеством нефти. обычно период отстоя колеблется в пределах от нескольких часов до нескольких суток.

2. с полунепрерывным отстоем обработанной эмульсии. Последняя поступает в нижнюю часть резервуара, в котором поддерживается слой горячей воды. Нефть, пройдя через слой воды, собирается в верхней части резервуара для окончательного отстоя. Высота слоя воды в первом резервуаре меняется в связи с интенсивностью отделения основной части воды из поступающей эмульсии. Поэтому вода периодически спускается в канализацию.

3. с непрерывным отстоем в группе резервуаров с автоматическим сбросом отстаивающейся воды в канализацию. В резервуарах необходимо поддерживать уровень раздела нефти и воды.

При сильной обводненности для более полного использования неотработанного деэмульгатора иногда целесообразно проводить деэмульсацию в две ступени с предварительной обработкой нефти горячей водой, сбрасываемой из отстойных резервуаров.

Термохимические установки, работающие под избыточным давлением. Стремление к сокращению расходов топлива на подогрев нефтяных эмульсий, повышению температур процессов обезвоживания и обессоливания и, как следствие, сокращение потерь легких фракций при отстое в резервуарах привело к необходимости проведения указанных процессов под повышенным давлением.

К преимуществам этих установок можно отнести следующее.

1. отстой подогретой нефтяной эмульсии в герметизированных емкостях с давлением до 1 МПа, а иногда и выше (в зависимости от свойств нефтей) позволяет почти ликвидировать потери легких фракций.

2. повышение температуры обрабатываемых эмульсий до 80-90°С дает возможность резко снизить из вязкость, что позволяет сократить время отстоя до 0,5-2 ч, уменьшить прочность защитных слоев глобул эмульгированной воды, способствуя этим проникновению в них вводимых химических веществ, а также снижая при этом расход последних.

3. снижение расходуемой на подогрев эмульсии теплоты за счет регенерации основной части теплоты потоков нефти.

4. способ характеризуется большой устойчивостью и надежностью ведения процессов, возможностью широко регулировать режим при различных обводненности и стойкости эмульсий.

Принципиальная схема теплохимической установки, работающей под давлением:

Нефть, собранная на промысле, поступает в резервуары Р-1, откуда насосом Н-1 вместе с деэмульгатором, подаваемым из емкости Е-1, прокачивается через теплообменник Т-1 в отстойник Е-2. в отстойнике под давлением 0,5-0,7 МПа нефть при ее динамическом отстое находится в течение 0,2-2 ч. Обезвоженная нефть через теплообменник Т-1 в резервуар Р-2. В резервуаре нефть дополнительно отделяется от воды. Отстоявшаяся вода сбрасывается в ловушку нефти Е-2, а затем закачивается в скважину А-1.

В качестве подогревателя можно использовать теплообменники с паровым или водяным теплоносителем или различные огневые нагреватели нефти.

Теплообменник Т-1 при термомеханическом обезвоживании применяют для предварительного подогрева нефти за счет теплоты отходящей с установки обезвоженной нефти и одновременного охлаждения подготовленной нефти перед откачкой ее в магистральный нефтепровод.

При отборе конструкции отстойника необходимо иметь в виду, что в этих аппаратах должно происходить:

1. слияние мелкодисперсных капелек воды в более крупные под действием сил взаимного притяжения после разрушения защитных пленок под воздействием теплоты и химических реагентов;

2. осаждение укрупнившихся капель под воздействием сил тяжести и разности плотностей нефти и воды.

При определенном столбе жидкости капли воды, опускаясь в нижние слои, на своем пути сталкиваются, укрупняясь при этом.

Электрическое обезвоживание и обессоливание. Электрический способ деэмульсации нефтей достаточно известен как эффективный и широко распространенный способ в промысловой и особенно заводской практике. Электрический способ имеет ряд преимуществ перед другими, одно из которых - возможность сочетать его с другими способами.

Наиболее эффективно электрическому воздействию поддаются эмульсии типа «вода в нефти», т.к. электрическая проводимость воды, да еще и соленой, во много раз превышает проводимость нефти. Электрообработка эмульсии типа «нефть в воде», невозможна в связи с постоянной угрозой короткого замыкания электродов через эмульсию.

Механизм разрушения эмульсий, помещенных в электрическом поле, следующий. Если безводную нефть налить между двумя плоскими параллельными электродами, находящимися под высоким напряжением, то возникает однородное электрическое поле, силовые линии которого параллельны друг к другу. При замене безводной нефти эмульсией типа «вода в нефти» расположение силовых линий меняется и однородность поля разрушается. В результате индукции электрического поля диспергированные капли поляризуются и вытягиваются вдоль силовых линий с образованием в вершинах капель воды электрических зарядов, противоположных зарядам на электродах. Под действием основного и дополнительного электрических полей происходит сначала упорядоченное движение, а затем столкновение капель воды под действием электрических сил.

С увеличением напряжения, приложенного к электродам, уменьшением вязкости скорость перемещения капель воды возрастает, повышается вероятность деформации, разрыва и слияния их в крупные. Изменение градиента электрического поля необходимо, чтобы преодолеть существующие силы отталкивания у капель с одноименными зарядами.

Факторы, повышающие эффективность процесса: дисперсность, содержание воды в эмульсии, плотность и вязкость нефти, электропроводность эмульсии, прочность поверхностных слоев капель воды.

Электрообезвоживающие и обессоливающие установки, работающие на токах промышленной частоты. Несмотря на высокие качественные показатели при обессоливании нефтей, установки эти очень чувствительны к колебаниям содержания воды в исходной нефти, что ограничивает их применение на ступенях обезвоживания промысловых установок.

В электродегидраторах промышленной частоты применяются открытые неизолированные электроды, находящиеся под высоким напряжением. Эмульсионная нефть поступает в межэлектродное пространство. Капли воды, укрупнившиеся в электрическом поле, оседают в нижнюю часть дегидратора, где окончательно отстаиваются в виде слоя свободной воды. В верхней части дегидратора, куда поднимается обработанная нефть, размещены проходные и подвесные изоляторы электродов. Таким образом, в электродегидраторе совмещены 2 процесса - обработка эмульсии в электрическом поле и отстой нефти от воды.

Особенности подготовки высоковязких, высокосернистых и сероводородсодержащих нефтей

В последнее время открыто и введено в разработку много месторождений с высоковязкой и высокосернистой нефтью, а также месторождений, нефти которых характеризуются повышенным содержанием свободного сероводорода.

Подготовка таких нефтей значительно сложнее, чем так называемых легких или средних нефтей, вязкость которых не превышает 0,2-0,5 см2/с, а содержание серы не более 2-3 %.

Подготовка высоковязких и высокосернистых нефтей, которые отличаются высокой плотностью и поэтому еще называются тяжелыми нефтями, осуществляется при более высоких температурах (80-100°С, а иногда и выше).

С целью обеспечения более жестких технологических параметров для подготовки тяжелых нефтей разрабатываются специальные огневые нагреватели нефти (до 100-120°С), электродегидраторы (например 2ТЭД-400) и другое оборудование.

Сбор и подготовка сероводородсодержащих нефтей должны производиться с применением специального оборудования, стойкого против сероводородной коррозии.

В обозначении (шифре) такого оборудования проставляется буква А. Например, сепараторы УБС-А, сепарационные установки с насосной откачкой УБСН-А, деэмульгаторы УД-А на различную производительность.

При смешивании сероводородсодержащих нефтей с другими нефтями, которое иногда допускается при сборе, часто образуются эмульсии, трудно поддающиеся деэмульсации.

Стабилизация нефти

После промысловой сепарации в нефти остается значительное количество углеводородов С14, значительная часть которых может быть потеряна при перекачке из резервуара в резервуар, при хранении и транспортировке нефти.

Чтобы ликвидировать потери легких бензиновых фракций, предотвратить загрязнение воздуха, необходимо максимально извлечь углеводороды С14 из нефти перед тем, как отправить ее на нефтеперерабатывающие заводы. Эта задача решается на установках стабилизации нефти, расположенных обычно в непосредственной близости от места ее добычи.

Повышенные потери легких углеводородов объясняется тем, что им свойственны низкие температуры кипения - значительно ниже температуры нефти, при которой она находится в резервуарах.

Давлением насыщенных паров или упругостью паров жидкости называется давление паров данной жидкости, находящейся с жидкостью в равновесном состоянии, при равной с жидкостью температуре.

При наличии двухфахной системы в условиях равновесия не происходит ни конденсации паров в жидкость, ни испарения последней, т.е. при динамическом равновесии число молекул, переходящих в единицу времени из жидкой фазы в паровую, равно числу молекул, перешедших из паровой фазы в жидкую.

Упругость паров возрастает с повышением температуры, зависит от состава жидкой и паровой фазы.

Упругость насыщенных паров нефти определяет в лаборатории на специальных аппаратах.

Давление насыщенных паров нефти регламентируется ГОСТом.

С целью снижения давления насыщенных паров и на этой основе сокращения потерь нефти от испарения производят стабилизацию нефти.

Существуют различные методы стабилизации нефти. Наибольшее распространение получили методы ректификации и горячей сепарации нефти. метод горячей сепарации является наиболее простым. Нефть с установки подготовки нефти при температуре или после дополнительного подогрева в нагревателях. Температура сепарации в зависимости от состава нефтей и заданного значения упругости паров стабильной нефти обычно выбирается в пределах от 40 до 80°С.

Давление сепарации в аппарате С-1 устанавливается близким к атмосферному. С помощью компрессоров ВК-1, отсасывающих паровую фазу, давление в сепараторе может быть снижено до 0,085-0,098 МПа.

В сепараторе С-1 происходит однократное испарение легких фракций нефти. стабильная нефть из сепаратора через холодильник Х-1 отводится в резервуарный парк. паровая фаза отбирается из сепаратора компрессором или эжектором и через холодильник Х-2 направляется в бензосепаратор С-2. В результате охлаждения более тяжелые углеводороды конденсируются и собираются в бензосепараторе, откуда конденсат откачивается насосом.

Не сконденсировавшиеся газы из сепаратора С-2 направляются в газовую систему. Метод горячей сепарации имеет ряд недостатков. К ним относятся низкая степень стабилизации нефти и низкое качество полученного конденсата.

Стабилизация нефти не является только средством сокращения потерь нефти. перед процессом стабилизации ставится и другая не менее важная задача - создание на основе этого процесса прочной сырьевой базы развивающейся нефтехимической промышленности нашей страны. Перед нестабилизационными установками ставится задача по извлечению определенной части пантановых фракций, достаточной для удовлетворения потребности этих нефтехимических производств.

Аппаратура и оборудование установок подготовки нефти и их обслуживание

Отстойники нефти

Отстойник ОГ-200°С предназначен для разделения нефтяных эмульсий на нефть и пластовую воду. Техническая характеристика ОГ-200°С приведена ниже.

Пропускная способность по нефти, т/сут, не менее

3000

Обводненность нефти, %, не более:

На входе

На выходе

30

1

Рабочее давление, МПа

0,6

Температура рабочей среды, °С, не более

100

Объем аппарата (сосуда), м3

200

Емкость отстойника разделена на сепарационный и отстойный отсек, которые сообщаются друг с другом при помощи двух коллекторов - распределителей, расположенных в нижней части корпуса.

В верхней части сепарационного отсека установлены распределитель эмульсий со сливными полками и сепаратор газа.

В нижней части отстойного отсека расположены два трубчатых перфорированных коллектора, над которыми размещены распределители эмульсии коробчатой формы. В этой части имеются также два коллектора для пропарки аппарата. В верхней части отсека расположены четыре сборника нефти, соединенные со штуцером выводы нефти из аппарата. В передней части корпуса перегородкой и переливными устройствами выделена водосборная камера, в которой помещен регулятор межфазного уровня.

Отстойник оснащен приборами контроля за параметрами технологического процесса, регуляторами уровней раздела фаз, предохранительной и запорной арматурой.

Для удобства обслуживания приборов, расположенных в верхней части корпуса, аппарат снабжен площадкой обслуживания.

Отстойник работает следующим образом.

Подогретая эмульсионная нефть с введенным в нее реагентом-деэмульгатором поступает в распределитель эмульсии сепарационного отсека и по сливным полкам и стенкам корпуса стекает в нижнюю часть отсека. Выделившийся из нефти в результате ее нагрева и снижения давления газ проходит через сепаратор и при помощи регулятора уровня «нефть - газ» выводится в газосборную сеть.

Нефтяная эмульсия поступает из сепарационного в отстойный отсек по двум перфорированным коллекторам, проходит через отверстия коробчатых распределителей и поднимается в верхнюю часть отсека. При этом происходит промывка нефти пластовой водой и ее обезвоживание. Обезвоженная нефть поступает в сборный коллектор и выводится из аппарата.

Отделившаяся от нефти вода через переливные устройства поступает в водосборную камеру и с помощью регулятора уровня «вода - нефть» сбрасывается в систему подготовки дренажных вод.

Отстойник оснащен приборами контроля и автоматического регулирования, позволяющими контролировать давление среды в аппарате, уровень раздела фаз в каждом из отсеков, а также обеспечивающими автоматическое поддержание уровней раздела фаз.

Для контроля за давлением среды в аппарате на верхней части его корпуса устанавливается технический манометр.

Контроль за уровнями раздела фаз «нефть - газ» и «нефть- пластовая вода» в отсеках аппарата осуществляется визуально при помощи четырех указателей уровня.

Автоматическое поддержание уровня раздела фаз «нефть - газ» в первом отсеке отстойника и уровня раздела газ «нефть- вода» во втором отсеке осуществляется при помощи регуляторов межфазного уровня.


Подобные документы

  • Подготовка нефти к переработке. Вредные примеси в нефтях из промысловых скважин. Методы разрушения эмульсий. Обессоливание и обезвоживание. Нефти, поставляемые на нефтеперерабатывающий завод, в соответствии с нормативами ГОСТ 9965-76. Растворенные газы.

    презентация [420,2 K], добавлен 26.06.2014

  • Исходные понятия реологии. Описание методов изучения реологических свойств аномальной нефти. Рассмотрение состава и свойств асфальтенов. Определения вязкости нефти и нефтепродуктов. Особенности применения капиллярных и ротационных вискозиметров.

    реферат [502,9 K], добавлен 20.01.2016

  • Определение числовых значений первичного объема нефти, плотности, значения удельного веса и объема при различных температурах хранения. Вычисление объема нефти в условиях падения ее уровня после расхода с использованием полученных вычислением значений.

    задача [4,1 M], добавлен 03.06.2010

  • Характеристика невозобновляемых источников энергии и проблемы их использования. Переход от традиционных источников энергии к альтернативным. Нефть и газ и их роль в экономике любого государства. Химическая переработка нефти. Добыча нефти в Украине.

    реферат [22,9 K], добавлен 27.11.2011

  • Перекачка высоковязких и высокозастывающих нефтей. Способ перекачки путем кавитационного воздействия. Принципиальная технологическая схема "горячей" перекачки. Применение углеводородных разбавителей. Гидроперекачка нефти внутри водяного кольца.

    реферат [189,5 K], добавлен 18.05.2015

  • Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

    презентация [1,1 M], добавлен 26.06.2014

  • Классификация промышленных отраслей в современном мире и их современные тенденции, сдвиги. Значение нефти в энергетике на сегодня. Проблемы и перспективы развития энергетического кризиса в будущем, его взаимосвязь с истощением мировых нефтяных запасов.

    презентация [1,0 M], добавлен 16.11.2010

  • Изучение кинетики тепловых процессов в резервуарах типа РВС для хранения нефти и нефтепродуктов. Расчет и построение физико-математической модели по оценке теплового состояния резервуара РВС с учетом солнечной радиации, испарений и теплообмена с грунтом.

    реферат [196,1 K], добавлен 25.09.2011

  • Прогнозы мировых и отечественных запасов нефти. Российская система классификации запасов. Переход к альтернативным источникам. Энергия приливов и отливов. Поиски экологически чистого и высокоэффективного энергоносителя, неисчерпаемого источника энергии.

    реферат [24,8 K], добавлен 09.11.2013

  • Рассмотрение горючего сланца как топливно-энергетического и химического сырья, являющегося нетрадиционным источником топлива, его состав, типы. Разработка месторождений в Беларуси. Технология получения сланцевой нефти методом термохимической переработки.

    доклад [11,1 K], добавлен 08.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.