Определение отношения теплоемкости воздуха при постоянном давлении и объеме
Фиксация положения молекулы в пространстве между рассматриваемой газовой и окружающей средой. Исследование адиабатического процесса, описываемого уравнением Пуассона. Характеристика закона сохранения энергии. Вычисление состояния идеального газа.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 18.09.2016 |
Размер файла | 35,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лабораторная работа
“Определение отношения теплоемкости воздуха при постоянном давлении и постоянном объеме”
Цель работы: Измерить отношение теплоемкости воздуха при постоянном давлении и теплоемкости воздуха при постоянном объеме.
Теоретическое введение:
Теплоемкость газа численно равна количеству теплоты, которое необходимо сообщить этому газу, чтобы увеличить его температуру на
.
Для определения отношения теплоемкости при постоянном давлении Ср к теплоемкости при постоянном объеме Cv следует рассмотреть процесс, где это отношение играет существенную роль. Таким процессом является адиабатический процесс, описываемый уравнением Пуассона:
либо
здесь Р- давление газа ([Р] = Па), V - объем газа ([v] = м3)
и
Для идеального газа
Здесь - количество степеней свободы молекулы рассматриваемого газа, т.е. число координат, достаточное для фиксации положения молекулы в пространстве между рассматриваемым газом и окружающей средой. В реальных условиях осуществить полную теплоизоляцию невозможно. Однако на практике пользуются тем фактом, что установление равновесного давления протекает очень быстро - за доли секунды, а на выравнивание температуры требуются минуты. Следовательно, осуществления процесса близкого к адиабатическому быстро изменяют давление в газе.
При адиабатическом процессе первое начало термодинамики (закон сохранения энергии) имеет следующий вид:
- изменение внутренней энергии газа (U -суммарная, механическая энергия всех молекул газа ([U] = Дж), А - работа при адиабатическом расширении либо сжатии ([А] = Дж).
Если газ расширяется, то А > 0, следовательно, соглао уравнению (5) внутренняя энергия уменьшается температура газа Т понижается. При сжатии газа А - имеет место обратный эффект.
Если газ расширяется изобарически (при постоями давлении), то согласно первому началу термодинамики
Количество теплоты Q, полученное газом, расходуется на изменение внутренней энергии и совершение работы А ([Q] = Дж).
Если же процесс изохорический (при постоянном объеме), то работа А = 0 и по первому закону гермодинамики:
Тепло расходуется лишь на изменение внутренней энергии. Если в обоих случаях температура изменилась больше на величину совершенной работы А. молекула адиабатический энергия газ
Если мы имеем один моль газа, то работа:
A=R
Где R - универсальная газовая постоянная .
Полученный нами вывод, что Ср >Cv согласуется с соотношением (4)
Так как в дальнейшем нам понадобиться уравнение изобарического и изохорического процессов, напишем уравнение Менделеева - Клапейрона - уравнение состояния идеального газа:
m -масса газа, - масса моля газа.
Ход работы:
1. Накачать в сосуд воздух до тех пор, пока разность уровней жидкости в манометре не будет равна 20-25 см. Прекратив накачивание, выждать 2-3 мин, пока температура внутри сосуда не станет равной температуре окружающей среды, т.е. разность уровней в манометр стабилизируется. Записать разность (hi) в таблицу.
2. Нажать рычаг К, тем самым соединить сосуд с атмосферой. Включить секундомер. По истечении времени t, измеренному по секундомеру, ключ отпустигь. Измерения проводить несколько раз с различными промежутками времени t от 3 до 15 сек. через каждые 3 сек.
3. После закрытия ключа К выждать, пока газ нагреется до темперагуры окружающей среды, т.е. разность уровней в манометре стабилизируется, отсчитать показания манометра hi и внесите в таблицу.
4. Для каждого значения t вычислить и занести полученные значения в таблицу.
5. Построить график зависимости величины от времени по данным таблицы.
Таблица 1
t, сек |
h1, мм |
h2, мм |
||
3(3,76) |
220 |
65 |
1,22 |
|
6(6,17) |
210 |
55 |
1,33 |
|
9(9,37) |
220 |
45 |
1,58 |
|
12(12,09) |
220 |
40 |
1,7 |
|
15(15,06) |
210 |
35 |
1,78 |
Отрезок отсекаемый экспериментальной прямой по оси ординат
Находим :
Расчетное уравнение:
Логарифмируем уравнение:
Находим частотные производные:
Относительная ошибка:
Абсолютная погрешность:
Вывод: Опытным путем определили отношение теплоемкости воздуха при постоянном давлении и постоянном объеме.
Размещено на Allbest.ru
Подобные документы
Виды теплоемкости и соотношение между теплоёмкостями при постоянном давлении и постоянном объеме. Расчет численного значения адиабаты в уравнении Пуассона для одноатомного и многоатомного газов. Теплоемкость в изотермическом и адиабатном процессах.
методичка [72,7 K], добавлен 05.06.2011Определение удельной и молярной теплоемкости. Уравнение Менделеева-Клапейрона. Расчет теплоемкости газа, сохраняющего неизменным объем. Метод наименьших квадратов. Отношение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме.
лабораторная работа [42,3 K], добавлен 21.11.2013Исследование процесса, происходящего в термодинамической системе при отсутствии теплообмена с окружающей средой. Определение теплоёмкости тела при постоянном давлении и при постоянном объёме. Расчет разности между соседними отсчётами; показатель адиабаты.
лабораторная работа [58,2 K], добавлен 05.05.2015Особенности и алгоритм определения теплоемкости газовой смеси (воздуха) методом калориметра при постоянном давлении. Процесс определения показателя адиабаты газовой смеси. Основные этапы проведения работы, оборудование и основные расчетные формулы.
лабораторная работа [315,4 K], добавлен 24.12.2012Расчет параметров состояния в контрольных точках цикла Брайтона без регенерации тепла. Изучение конца адиабатного процесса сжатия. Нахождение коэффициента теплоемкости при постоянном объеме и при постоянном давлении. Вычисление теплообменного аппарата.
курсовая работа [902,9 K], добавлен 01.04.2019Уравнение состояния идеального газа, закон Бойля-Мариотта. Изотерма - график уравнения изотермического процесса. Изохорный процесс и его графики. Отношение объема газа к его температуре при постоянном давлении. Уравнение и графики изобарного процесса.
презентация [227,0 K], добавлен 18.05.2011Работа идеального газа. Определение внутренней энергии системы тел. Работа газа при изопроцессах. Первое начало термодинамики. Зависимость внутренней энергии газа от температуры и объема. Основные способы ее изменения. Сущность адиабатического процесса.
презентация [1,2 M], добавлен 23.10.2013Закон сохранения энергии и первое начало термодинамики. Внешняя работа систем, в которых существенную роль играют тепловые процессы. Внутренняя энергия и теплоемкость идеального газа. Законы Бойля-Мариотта, Шарля и Гей-Люссака, уравнение Пуассона.
презентация [0 b], добавлен 25.07.2015Молекулы идеального газа и скорости их движения. Упрyгoe стoлкнoвeниe мoлeкyлы сo стeнкoй. Опрeдeлeниe числа стoлкнoвeний мoлeкyл с плoщадкoй. Распрeдeлeниe мoлeкyл пo скoрoстям. Вывод формул для давления и энергии. Формула энергии идеального газа.
курсовая работа [48,6 K], добавлен 15.06.2009Определение расхода смеси, ее средней молекулярной массы и газовой постоянной, плотности и удельного объема при постоянном давлении в интервале температур. Определение характера процесса (сжатие или расширение). Процесс подогрева воздуха в калорифере.
контрольная работа [404,8 K], добавлен 05.03.2015