Операторный метод анализа переходных процессов
Преобразование Лапласа и его применение к решению дифференциальных уравнений. Теоремы дифференцирования, смещения и интегрирования. Законы Кирхгофа и Ома в операторной форме. Операторные схемы замещения идеализированных двухполюсных пассивных элементов.
Рубрика | Физика и энергетика |
Вид | презентация |
Язык | русский |
Дата добавления | 21.09.2016 |
Размер файла | 292,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Решение линейных дифференциальных уравнений, характеризующих переходные процессы в линейных цепях. Прямое преобразование Лапласа. Сущность теоремы разложения. Законы Ома и Кирхгофа в операторной форме. Схема замещения емкости. Метод контурных токов.
презентация [441,7 K], добавлен 28.10.2013Основные свойства преобразования Лапласа. Нахождение изображений функции времени. Теорема смещения. Свойство линейности. Законы Кирхгофа и Ома в операторной форме. Операторные схемы замещения реактивных элементов при ненулевых начальных условиях.
лекция [130,7 K], добавлен 23.03.2009Прямое преобразование Лапласа. Замена линейных дифференциальных уравнений алгебраическими уравнениями. Законы Ома и Кирхгофа в операторной форме. Метод переменных состояния. Особенности и порядок расчета переходных процессов операторным методом.
презентация [269,1 K], добавлен 28.10.2013Использование электрических и магнитных явлений. Применение преобразования Лапласа и его свойств к расчету переходных процессов. Переход от изображения к оригиналу. Формулы разложения. Законы цепей в операторной форме. Операторные схемы замещения.
реферат [111,9 K], добавлен 28.11.2010Основные свойства преобразования Лапласа. Законы Кирхгофа и Ома в операторной форме. Соотношения в элементах электрических цепей. Операторные схемы замещения элементов при ненулевых начальных условиях. Нахождение реакций при ненулевых начальных условиях.
реферат [126,1 K], добавлен 25.04.2009Обратное преобразование Лапласа и теорема разложения Хевисайда. Операторные схемы замещения элементов: резистивного, индуктивного и емкостного. Законы Кирхгофа для изображений. Построение операторной схемы для цепи с учетом независимых начальных условий.
презентация [187,3 K], добавлен 20.02.2014Порядок определения независимых начальных условий. Отображение операторной схемы, которая рассчитывается любым методом в операторной форме. Методика и этапы вычисления напряжений и токов переходного процесса в функции времени по теореме разложения.
презентация [233,1 K], добавлен 28.10.2013Расчет переходного процесса классическим методом и решение дифференциальных уравнений, описывающих цепь. Схема замещения электрической цепи. Определение производной напряжения на емкости в момент коммутации. Построение графиков переходных процессов.
контрольная работа [384,2 K], добавлен 29.11.2015Причины возникновения переходных процессов. Законы коммутации. Математические основы анализа переходных процессов. Алгоритм расчета переходного процесса классическим и операторным методом, их отличительные особенности, главные преимущества и недостатки.
курсовая работа [163,7 K], добавлен 07.06.2011Проведение анализа линейной разветвленной электрической цепи при помощи численного метода интегрирования дифференциальных уравнений. Ознакомление со спецификой анализа цепи операторным и частотным методами при апериодическом и периодическом воздействиях.
дипломная работа [1,0 M], добавлен 28.12.2011Характеристика переходных процессов в электрических цепях. Классический и операторный метод расчета. Определение начальных и конечных условий в цепях с ненулевыми начальными условиями. Расчет графиков переходного процесса. Обобщенные характеристики цепи.
курсовая работа [713,8 K], добавлен 21.03.2011Расчет токов и напряжения во время переходного процесса, вызванного коммутацией для каждой цепи. Классический и операторный методы. Уравнение по законам Кирхгофа в дифференциальной форме для послекоммутационного режима. Составляющие токов и напряжений.
контрольная работа [434,6 K], добавлен 11.04.2010Составить систему уравнений. С учетом взаимной индуктивности для исходной схемы составить систему уравнений по законам Кирхгофа для мгновенных значений и в комплексной форме. Выполнить развязку индуктивной связи и привести эквивалентную схему замещения.
реферат [245,8 K], добавлен 04.07.2008Содержание классического метода анализа переходных процессов в линейных цепях: непосредственное интегрирование дифференциальных уравнений, описывающих электромагнитное состояние цепи. Два закона коммутации при конечных по величине воздействиях в цепи.
презентация [679,0 K], добавлен 28.10.2013Определение реакций опор составной конструкции по системе двух тел. Способы интегрирования дифференциальных уравнений. Определение реакций опор твердого тела. Применение теоремы об изменении кинетической энергии к изучению движения механической системы.
задача [527,8 K], добавлен 23.11.2009Анализ электрической цепи при переходе от одного стационарного состояния к другому. Возникновение переходных колебаний в электрических цепях. Законы коммутации и начальные условия. Классический метод анализа переходных колебаний в электрических цепях.
реферат [62,1 K], добавлен 23.03.2009Ток и плотность тока проводимости. Закон Ома в дифференциальной форме. Стороннее электрическое поле. Законы Кирхгофа в дифференциальной форме. Уравнение Лапласа для электрического поля в проводящей среде. Дифференциальная форма закона Джоуля-Ленца.
презентация [512,3 K], добавлен 13.08.2013Связь комплексных амплитуд тока и напряжения в пассивных элементах электрической цепи. Законы Кирхгофа для токов и напряжений, представленных комплексными амплитудами. Применение при расчёте трёхфазных цепей.
реферат [48,4 K], добавлен 07.04.2007Назначение электромагнитных переходных процессов в электроэнергетических системах при коротких замыканиях. Составление схемы замещения. Номинальные значения мощности и напряжения синхронных машин. Паспортные данные трансформаторов и автотрансформаторов.
презентация [101,8 K], добавлен 30.10.2013Идеальная жидкость как жидкость без внутреннего трения. Безнапорное движение - движение жидкости в канале. Решение дифференциальных уравнений Навье-Стокса. Преобразование Лапласа для временных и преобразование Фурье для пространственных переменных.
курсовая работа [220,9 K], добавлен 09.11.2011