Общая энергетика

Современные способы получения электрической энергии. Термодинамический цикл паротурбинных электростанций. Устройство парового котла, его основные элементы. Конденсационные устройства паровых турбин. Каскадное и комплексное использование водных ресурсов.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 10.09.2016
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общая энергетика

Содержание

1. Современные способы получения электрической энергии

1.1 Тепловые конденсационные электрические станции

1.2 Теплоэлектроцентрали

1.3 Газотурбинные установки

1.4 Парогазовые установки

1.5 Гидравлические электрические станции

1.6 Аккумулирующие электрические станции

1.7 Приливные электрические станции

1.8 Магнитогидродинамическое преобразование энергии

1.9 Геотермальные электростанции

1.10 Ветровые электростанции

1.11 Классификация электрических станций

1.12 Солнечные электростанции

1.13 Использование морских возобновляемых ресурсов

2. Тепловые электрические станции и их технологическая схема. Термодинамический цикл паротурбинных электростанций

2.1 Способы производства электрической и тепловой энергии

2.2 Принципиальная технологическая схема ТЭЦ

2.3 Принципиальная технологическая схема КЭС

2.4 Двухвальные турбоагрегаты

3. Производство пара на электрической станции

3.1 Место и значение парового котла в системе электростанции

3.2 Классификация паровых котлов

3.3 Технологическая схема производства пара

3.4 Основные характеристики паровых котлов

4. Котельные установки

4.1 Паровой котел и его основные элементы

4.2 Поверхности нагрева парового котла

4.3 Конструкции отечественных паровых котлов

4.4 Тепловой баланс парового котла

5. Паровые и газовые турбины

5.1 Действие рабочего тела на лопатки

5.2 Активные турбины

5.3 Реактивные турбины

5.4 Мощность и КПД турбины

5.5 Классификация турбин

5.6 Конденсационные устройства паровых турбин

5.7 Газотурбинные установки (ГТУ)

5.8 Турборасширительные машины

6. Технологические схемы АЭС

6.1 АЭС с водо-водяными энергетическими реакторами

6.2 АЭС с канальными водографитовыми кипящими реакторами

6.3 АЭС с реакторами на быстрых нейтронах

7 Повышение эффективности использования топливно-энергетических ресурсов

7.1 Основные способы организации энергосберегающих технологий

7.2 Утилизация вторичных (побочных) энергоресурсов (ВЭР)

8. Типы гидроэнергетических установок и схемы использования водной энергии

8.1 Типы гидроэнергетических установок

8.2 Напор, расход и мощность гидроэнергетических установок

8.3 Основные схемы использования водной энергии

8.4 Особые схемы использования водных ресурсов

8.5 Схемы насосного аккумулирования энергии

8.6 Схемы использования энергии приливов

9. Гидравлические турбины.

9.1 Классификация гидротурбин

9.2 Активные гидротурбины

9.3 Реактивные гидротурбины

9.4 Основные элементы проточного тракта реактивных гидротурбин

9.5 Кавитация

10. Гидроэлектростанции и основы использования водной энергии

10.1 Состав и компоновка основных сооружений ГЭС

10.2 Плотины и затворы ГЭС

10.3 Здания ГЭС

10.4 Водохранилище, нижний бьеф и их характеристики

10.5 Регулирование речного стока водохранилищами ГЭС

10.6 Каскадное и комплексное использование водных ресурсов

1. Современные способы получения электрической энергии

1.1 Тепловые конденсационные электрические станции

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива вначале в механическую, а затем в электрическую. Механическую энергию упорядоченного вращения вала получают с помощью тепловых двигателей, преобразующих энергию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются:

по виду используемого рабочего тела - пар или газ;

по способу преобразования тепловой энергии в механическую-- поршневой или роторный (табл. 2.2). В поршневом способе для преобразования используется потенциальная энергия рабочего тела, получаемая при его нагревании. В роторном способе используется кинетическая энергия движущихся с большой скоростью частиц рабочего тела.

Способ работы

Рабочее тело

пар

газ

Поршневой

Паровая машина

Двигатель внутреннего сгорания

Роторный

Паровая турбина

Газовая турбина

Паровая машина была единственным двигателем, используемым в промышленности и на транспорте в XVIII и XIX вв. В настоящее время она практически не встречается, а широко применявшиеся в прошлом паровозы и пароходы почти полностью сняты с производства.

В настоящее время наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение.

На современных мощных ТЭС устанавливают паровые турбины,. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 г. С тех пор началось развитие мощных паротурбинных электростанций.

В качестве тепловых двигателей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателей стремятся максимально увеличить температуру рабочего тела и его давление до значений, приемлемых по условиям механической прочности конструкционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре-- около 600°С и давлении 30 МПа. Для охлаждения рабочего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30-- 40°С. При этом давление пара резко падает.

На рис. 2.3 схематически показаны стадии преобразования первичной энергии органического топлива в электрическую.

Основные процессы теплового цикла паровых установок, как было показано ранее, происходят в следующих элементах: в парогенераторах -- подвод теплоты, в турбинах -- расширение пара, в конденсаторах-- отвод теплоты, в турбинах -- расширение пара, в конденсаторах -- охлаждение. С помощью насосов высокого давления производится сжатие, при котором конденсат нагнетается в парогенератор.

Схема тепловой станции, приведенная на рис. 2.1, более подробно показана на рис. 2.4 и 2.5 Работа станции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с воздухом из воздуходувки 3' подается в топку S, Теплота, получаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змеевику 5 накачивается насосом 14 в барабан котла 5'. Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбине энергия пара преобразуется в механическую энергию вращения ротора генератора 9, вырабатывающего электрическую энергию. Отработанный в турбине пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забираемой из водоема (пруда или реки) 11, накачиваемой насосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твердые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмосферу. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.

Рассмотрим дополнительно работу одного из основных элементов станции -- парогенератора, в котором получают пар для питания станции. Современный парогенератор представляет собой сложное техническое сооружение больших размеров, высота которого соизмерима с высотой пятиэтажного дома. В топке парогенератора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500--2000°С. Для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогретый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличивает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройства, а затем направляются в дымовую трубу. Вода, подаваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды производится в специальных устройствах -- питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого находится вода, а в верхней части -- пар. По циркуляционной трубе 2 вода поступает в трубки экрана /, покрывающие стенки топки 7. Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм снаружи и 32 мм внутри), для того чтобы они смогли выдержать большое давление пара. В крупном парогенераторе каждый час испаряются сотни тонн воды и поэтому трубки имеют общую длину до 50 км.

Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в экономайзере 5, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателе 6. Выходящий из барабана пар дополнительно нагревается в пароперегревателе 4._

В барабанном парогенераторе происходит естественная циркуляция воды и пароводяной смеси за счет их разных плотностей. С увеличением температуры и давления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателе 4 происходит подогрев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Кроме того, к питательной воде, используемой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распространение, так как они дешевле барабанных. У барабанных парогенераторов при высоких давлениях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стране в 30-е годы по инициативе Л. К. Рамзина, который разработал ряд оригинальных конструкций котлов.

Турбины. Полученный в парогенераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам передается в сопла. Сопла предназначены для преобразования внутренней энергии пара в кинетическую энергию упорядоченного движения молекул.

Если перед входом в сопло пар имел некоторую начальную скорость Со и начальное давление р1 (рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения с1 и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара уменьшается от с1 до с2 вследствие вращения турбины со скоростью х.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

У реактивной турбины или ступени происходит расширение пара, проходящего через каналы рабочих лопаток. В зависимости от показателей расширения пара в каналах турбины характеризуют ступенями реактивности. В настоящее время турбины выполняют многоступенчатыми, причем в одной и той же турбине могут быть как активные, так и реактивные (с различной степенью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины показано на рис. 2.9. В соплах турбины происходит частичное расширение пара до промежуточного давления р1. Дальнейшее расширение пара до давления p2 происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения сi, а в каналах между лопатками уменьшается из-за вращения лопаток до значения С2.

Общий вид лопаток мощной паровой турбины показан на рис. 2.10.

В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные расширением пара.

Появление реактивной силы можно показать на следующем примере. Пусть в бак, установленный на тележке (рис. 2.11), подведен пар под давлением, который в положении I равномерно действует на все стенки. Если убрать пробку, то равновесие бака сразу же нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а тележка под действием реактивной силы начнет двигаться вправо (положение II).

Конденсаторы. Пар, выходящий из турбины, направляют для охлаждения и конденсации в специальное устройство называемое конденсатором. Конденсатор представляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конденсатор обычно при температуре 10--15°С и выходящая из него при температуре 20--25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давление в конденсаторе поддерживается в пределах 3-- 4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50--100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что примерно равно расходу воды в Москве-реке.

Если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденсатор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлаждения воды, нагретой в конденсаторе, сооружают градирни, представляющие собой устройства высотой примерно 50 м. Вода вытекает струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлаждается. Внизу расположен бассейн, в котором вода собирается и затем насосами подается в конденсатор.

Тепловой баланс конденсационной электрической станции. На ТЭС происходят многократные преобразования энергии, сопровождающиеся потерями. Экономичность процесса преобразования химической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из анализа теплового баланса электрической станции. Если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теплоты.

1.2 Теплоэлектроцентрали

Производство электрической энергии на ТЭС сопровождается большими потерями теплоты. В то же время многим отраслям промышленности таким, как химическая, текстильная, пищевая, металлургическая, и ряду других теплота необходима для технологических целей. Для отопления жилых зданий требуется в значительном количестве горячая вода.

В нашей стране больше Ѕ всего добываемого топлива расходуется на тепловые нужды предприятий. Ориентировочное представление о потреблении теплоты в промышленности можно получить, рассмотрев потребности в нем какого-либо конкретного предприятия. Например, на автомобилестроительном заводе приблизительно ѕ всей потребляемой теплоты идет на отопление, вентиляцию и бытовые нужды и только ј расходуется на производственные цели. Противоположная ситуация на азотнотуковом комбинате -- предприятии химической промышленности. Здесь примерно ѕ всей потребляемой теплоты расходуется на производственные цели. Удовлетворение потребностей в теплоте сооружением небольших индивидуальных котельных, как правило, не экономично, так как такие установки работают с небольшими КПД и технически менее совершенны, чем крупные установки современных мощных ТЭС.

В этих условиях естественно использовать пар, получаемый в парогенераторах на тепловых станциях, как для выработки электроэнергии, так и для теплофикации потребителей. Электростанции, выполняющие такие функции, называются теплоэлектроцентралями.

Отработанный в турбинах конденсационных станций пар имеет температуру 25--30°С, поэтому он не пригоден для использования в технологических процессах на предприятиях.» Во многих производствах требуется пар, имеющий давление 0,5--0,9 МПа, а иногда и до 2 МПа длят приведения в движение прессов, паровых молотов, турбин. Иногда требуется горячая вода, нагретая до температуры 70--150°С.

Для получения пара с необходимыми для потребителей параметрами используют специальные турбины с промежуточными отборами пара. В таких турбинах, после того как часть энергии пара израсходуется на приведение в движение турбины и параметры его понизятся, производится отбор некоторой доли пара для потребителей. Оставшаяся доля пара далее обычным способом используется в турбине и затем поступает в конденсатор. Поскольку для части пара перепад давления оказывается меньшим, несколько возрастает расход топлива на выработку электроэнергии. Так, если при перепаде давления от 9000 до 4 кПа на выработку 1 кВт-ч электроэнергии требуется 4 кг пара, то при увеличении давления отработанного пара до 120 кПа необходимое количество пара составляет 5,5 кг. Однако такое увеличение расхода пара на выработку электроэнергии на ТЭЦ и связанное с этим увеличение расхода топлива в конечном счете оказываются меньшими по сравнению с расходом топлива в случае раздельной выработки электроэнергии и выработки ,теплоты на небольших котельных установках.

Благодаря более полному использованию тепловой энергии КПД ТЭЦ достигает 60-65%, а КПД КЭС --не более 40%. На рис. 2.13 приведен примерный тепловой баланс ТЭЦ.

Горячая вода и пар под давлением, достигающем в отдельных случаях 3 МПа, доставляются потребителям по трубопроводам. Совокупность трубопроводов, предназначенных для передачи теплоты, называется тепловой сетью. Экономия топлива связана с совершенствованием тепловой изоляции, поэтому повышение ее качества относится к одной из важнейших задач теплофикации.

Эффективность работы системы теплоснабжения во многом зависит от рационального размещения ТЭЦ, которые стремятся по возможности приблизить к крупным потребителям теплоты и электрической энергии, так как передача теплоты в виде пара неэкономична на расстояниях свыше 5--7 км. На решение вопроса о целесообразных местах расположения ТЭЦ в последнее время значительно влияет загрязнение ими окружающей среды.

Централизованное теплоснабжение на базе комбинированной выработки теплоты и электрической энергии имеет большие преимущества: обеспечивает основную долю потребности в теплоте промышленного и жилищно-коммунального хозяйства, уменьшает расходование топливно-энергетических ресурсов, а также материальных, и трудовых затрат в системах теплоснабжения.

Однако при максимальной централизации теплоснабжения на ТЭЦ можно выработать только 25--30% требуемой электроэнергии. Работа же конденсационных станций определяется только условиями выработки электроэнергии, что делает весьма благоприятными концентрацию больших электрических мощностей и позволяет быстро наращивать электроэнергетический потенциал страны. Поэтому в настоящее время и в будущем будут строиться конденсационные станции, несмотря на те преимущества, которые имеет выработка электроэнергии -на ТЭЦ. Развитию теплофикации в СССР придается большое значение. Так, уже в начале девятой пятилетки установленная электрическая мощность теплофикационных агрегатов превысила 45 млн. кВт, что составило около ? установленной мощности всех ТЭС страны, работающих на органическом топливе.

1.3 Газотурбинные установки

На отечественных ТЭС начинают широко использовать газотурбинные установки (ГТУ). В качестве рабочего тела в них используется смесь продуктов сгорания топлива с воздухом или нагретый воздух при большом давлении и высокой температуре. В ГТУ преобразуется теплота газов в кинетическую энергию вращения ротора турбины.

По конструктивному исполнению и принципу преобразования энергии газовые турбины не отличаются от паровых. Экономичность работы газовых турбин примерно такая же, как и двигателей внутреннего сгорания, а при очень высоких температурах рабочего газа экономичность газовых турбин выше. Кроме того, газовые турбины более компактны, чем паровые турбины и двигатели внутреннего сгорания аналогичной мощности.

Особенно широкое распространение газовые турбины получили на транспорте. Применение газовых турбин в качестве основных элементов авиационных двигателей позволило в современной авиации достичь больших скоростей, грузоподъемности и высоты полета. Газотурболокомотивы на железнодорожном транспорте конкурентоспособны с тепловозами, оборудованными поршневыми двигателями внутреннего сгорания.

Современные газовые турбины в основном работают на жидком топливе, однако кроме жидкого топлива может использоваться газообразное: как естественный природный горючий газ, так и искусственный газ, получаемый особым сжиганием твердых топлив любых видов.

Представляет практический интерес перспектива сжигания угля в места его залегания. При этом под землю компрессорами в необходимом количестве подается воздух, производится специальное сжигание угля с образованием горючего газа, который затем подается по трубам к газотурбинным установкам. Впервые в мире такая опытная электростанция построена в Тульской области.

Работа газотурбинной установки осуществляется следующим образом. В камеру сгорания / подается жидкое или газообразное топливо и воздух (рис. 2.14, с). Получающиеся в камере сгорания газы 2 с высокой температурой и под большим давлением направляются на рабочие лопатки турбины 3. Турбина вращает электрический генератор 4 и компрессор 5, необходимый для подачи под давлением воздуха 6 в камеру сгорания. Сжатый в компрессоре воздух перед подачей в камеру сгорания подогревается в регенераторе 7 отработанными в турбине горючими газами 8. Подогрев воздуха позволяет повысить эффективность сжигания топлива в камере сгорания.

1.4 Парогазовые установки

Отработанные в ГТУ газы имеют высокую температуру, что неблагоприятно сказывается на КПД термодинамического цикла. Совмещение газо- и паротурбинных агрегатов таким образом, что в них происходит совместное использование теплоты, получаемой при сжигании топлива, позволяет на 8--10% повысить экономичность работы установки, называемой парогазовой, и снизить ее стоимость на 25%.

Парогазовые установки, использующие два вида рабочего тела - пар и газ - относятся к бинарным. В них часть теплоты, получаемой при сжигания топлива в парогенераторе, расходуется на образование пара, который затем направляется в турбину (рис. 2.15), Охлажденные до температуры 650--700°С газы попадают на рабочие лопатки газовой турбины. Отработанные в турбине газы используются для подогрева питательной воды, что позволяет уменьшить расход топлива и повысить КПД всей установки, который может достичь примерно 44%,

Парогазовые установки могут работать также по схеме, в которой отработанные в газовой турбине га5ы поступают в паровой/котел (рис. 216 -- обозначения те же, что и на рис. 2.15). Газовая турбина в этом случае служит как бы частью паросиловой установки. В камере сгорания газотурбинной установки сжигается 30--40% топлива, а в парогенераторе -- остальное топливо.

Газотурбинные установки могут работать только на, жидком или газообразном топливе, так как продукты сгорания твердого топлива, содержащие золу и механические примеси, оказывают вредное влияние на лопатки газовой турбины. В газотурбинных установках, так же как и в обычных паросиловых установках, тепловая энергия преобразуется в механическую в турбинах и механическая энергия -- в электрическую в генераторах. Эта схема электромеханического преобразования энергии требует использования материалов, способных выдерживать большие механические нагрузки при больших частотах вращения вала турбины и высоких температурах. Ограниченная прочность материалов вынуждает использовать пар при температурах не выше 600°С, в то время как температура сжигаемого топлива достигает 2000°С. Сокращение разницы этих температур позволит существенно повысить КПД тепловых установок.

1.5 Гидравлические электрические станции

Основой изучения работы ГЭС, преобразующих энергию воды в электрическую энергию, является наука, называемая гидравликой; она включает в себя гидростатику, изучающую равновесие жидкостей, и гидродинамику, изучающую движение жидкостей.

Мощность потока воды, протекающего через некоторое сечение -- створ, определяется расходом воды Q, высотой между уровнем воды в верхнем по течению бассейне (верхнем бьефе) и уровнем воды в нижнем по течению бассейне (нижнем бьефе) в месте сооружения плотины. Разность уровней верхнего и нижнего бассейнов называется напором. Мощность потока в створе (кВт) можно определить посредством расхода (м3/с) и напора (м):

P=9,81QH.

В двигателях ГЭС можно использовать только часть мощности потока воды в створе из-за неизбежных потерь мощности в гидротехнических сооружениях, турбинах и генераторах, учитываемых коэффициентом полезного действия з. Таким образом, приближенно мощность ГЭС

P=9,81QHз.

Напор Н увеличивают на равнинных реках с помощью плотины (рис. 2.17, а), а в горных местностях строят специальные обводные каналы, называемые деривационными (рис. 2.17, б)

В гидравлических турбинах преобразуется энергия воды в механическую энергию вращения вала турбины. Турбина называется активной, если используется динамическое давление воды, и реактивной, если используется статическое давление при реактивном (см. рис. 2.11) эффекте.

В ковшовой активной турбине_(рис. 2.18, а) * потенциальная энергия гидростатического давления в суживающейся насадке -- сопле -- полностью превращается в кинетическую энергию движения воды.(Рабочее колесо турбины выполнено в виде диска, по окружности которого расположены ковшеобразные лопасти (рис. 2.18, б). Вода, огибая поверхности лопастей, меняет направление движения. При этом возникают центробежные силы, действующие на поверхности лопастей, и энергия движения воды преобразуется в энергию вращения колеса турбины.

Если скорость движения воды, вытекающей из турбины, равна нулю, то вся кинетическая энергия воды, не считая потерь, превращается в механическую энергию турбины.

Внутри сопла расположена регулирующая игла (рис. 2.18), перемещением которой меняется выходное сечение сопла, а следовательно, и расход воды.

В реактивной гидравлической турбине на лопастях рабочего колеса преобразуется как кинетическая, так и потенциальная энергия воды в механическую энергию турбины. Вода, поступающая на рабочее колесо турбины, обладает избыточным давлением, которое по мере протекания воды по проточному тракту рабочего колеса. уменьшается. При этом вода оказывает реактивное давление на лопасти турбины и слагающая потенциальной энергии воды превращается в механическую энергию рабочего колеса турбины.

За счет кривизны лопастей изменяется направление потока воды, при котором, как и в активной турбине, кинетическая энергия воды в результате действия центробежных сил превращается в механическую энергию турбины. Рабочее колесо реактивной турбины в отличие от активной полностью находится в воде, т. е. поток воды поступает одновременно на все лопасти рабочего колеса. Различные конструкции рабочих колес реактивных турбин показаны на рис. 2.19.

У радиально-осевых турбин лопасти рабочего колеса имеют сложную кривизну, поэтому вода, поступающая с направляющего аппарата, постепенно меняет направление с радиального на осевое. Такие турбины используют в широком диапазоне напоров от 30 до 600 м. В настоящее время созданы уникальные раднально-осевые турбины мощностью 700 МВт.

Пропеллерные турбины обладают простой конструкцией и высоким КПД, однако у них с изменением нагрузки КПД резко уменьшается.

У поворотно-лопастных гидротурбин в отличие от пропеллерных лопасти рабочего колеса поворачиваются при изменении режима работы для поддержания высокого значения КПД.

Двухперовые турбины имеют спаренные рабочие лопасти, что позволяет повысить расход воды. Широкое применение их ограничено конструктивными сложностями. Сложная конструкция свойственна также д и а-тональным турбинам, у которых рабочие лопасти поворачиваются относительно своих осей.

Радиально-осевые турбины установлены на Братской, Красноярской ГЭС и др. Поворотно-лопастными турбинами оборудованы Куйбышевская, Волгоградская, Каховская и Кременчугская ГЭС и др.

На электрических станциях турбина и генератор связаны общим валом. Частоты их вращения не могут выбираться произвольно. Они зависят от числа пар полюсов ротора генератора и частоты переменного тока, которая должна соответствовать стандартной. Кроме того, необходимо учитывать, что при небольших частотах вращения турбины получаются громоздкими и дорогими. Чтобы получить скорости агрегатов, близкие к оптимальным, при больших напорах используют турбины с малыми значениями коэффициента быстроходности, а при небольших напорах - с большими значениями этого коэффициента.

Разнообразие природных условий, в которых сооружаются ГЭС, определяет разнообразие конструктивного исполнения турбин. Мощности турбин изменяются от нескольких киловатт до 500 МВт, а частота вращения изменяется от 16% до 1500 мин-1.

В последнее время стали применяться горизонтальные агрегаты (капсульные), в которых генератор заключен в герметичную капсулу, обтекаемую водой. КПД таких агрегатов выше (95--96%) благодаря лучшим гидравлическим условиям обтекания. Такими агрегатами оборудованы, например, Киевская и Каневская ГЭС.

При сооружении ГЭС обычно решают комплекс народнохозяйственных задач, в который помимо выработки электрической энергии входит регулирование стока воды и улучшение судоходства реки, создание орошаемых массивов, развитие энергоемких производств, использующих местное сырье, и т. д.

На равнинных реках ГЭС с плотинной схемой концентрации напора разделяются на два типа: русловые и приплотинные. При напоре до 30 м здание станции, как и плотина, воспринимает напор и располагается в русле реки (рис. 2.20, а). Такие ГЭС называются русловыми. Так как с ростом напора увеличивается объем строительных работ по сооружению зданий русловых гидроэлектростанций, то при напорах, превышающих 25--30 м, здание станции помещается за плотиной (рис. 2.20, б). Такие ГЭС называются приплотинными. На них весь напор воспринимается плотиной.

В настоящее время на равнинных реках сооружают станции, напор которых достигает 100 м, например на Братской ГЭС, построенной на Ангаре, и на Асуанской ГЭС, построенной в Египте.

На рис. 2.21 показана Волжская ГЭС имени В. И. Ленина, а на рис. 2.22 --Саяно-Шушенская ГЭС на р. Енисей, у которой высота плотины составляет 240 м и вода по водоводам поступает к 10 турбинам, вращающим электрические генераторы мощностью по 640 МВт каждый.

1.6 Аккумулирующие электрические станции

Производство электроэнергии на электрических станциях и ее потребление различными приемниками представляют собой процессы, взаимосвязанные таким образом, что в силу физических закономерностей мощность потребления электроэнергии в какой-либо момент времени должна быть равна генерируемой мощности.

При идеальном равномерном потреблении электроэнергии должна происходить равномерная работа определенного числа электростанций. В действительности работа большинства отдельных электроприемников неравномерна и суммарное потребление электроэнергии также неравномерно. Можно привести множество примеров неравномерности работы установок и приборов, потребляющих электроэнергию. Завод, работающий в одну или две смены, неравномерно потребляет электрическую энергию в течение суток. В ночное время потребляемая им мощность близка к нулю. Улицы и квартиры освещают только в определенные часы суток. Работа электробытовых приборов, вентиляторов, пылесосов, электрических печей, нагревательных приборов, телевизоров, радиоприемников, электробритв также неравномерна. В утренние и вечерние часы коммунальная нагрузка наибольшая.

График нагрузки некоторого района или города, представляющий собой изменение во времени суммарной мощности всех потребителей, имеет провалы и максимумы. Это означает, что в одни часы суток требуется большая суммарная мощность генераторов, а в другие часы часть _ генераторов или электростанций должна быть отключена или должна работать с уменьшенной нагрузкой. Число электростанций и их мощность определяются относительно непродолжительным максимумом нагрузки потребителей. Это приводит к недоиспользованию оборудования и удорожанию энергосистем. Так, снижение числа часов использования установленной мощности крупных ТЭС с 6000 до 4000 ч в год приводит к возрастанию себестоимости вырабатываемой электроэнергии на 30--35%.

Анализ тенденций в потреблении электрической энергии показывает, что в дальнейшем неравномерность потребления будет увеличиваться по мере роста благосостояния населения и связанного с ним увеличения коммунально-бытовой нагрузки, по мере повышения электровооруженности труда. Сокращение числа рабочих дней в неделе также способствует повышению неравномерности потребления электроэнергии. Такое положение характерно не только для нашей страны. В большинстве стран Западной Европы неравномерность в потреблении электроэнергии такова, что в течение часа изменение нагрузки достигает 30% от максимальной мощности и в перспективе также ожидается увеличение неравномерности. Кардинально изменить характер потребления электроэнергии очень трудно, так как он зависит от установившегося ритма жизни людей и ряда не зависящих от „ людей объективных обстоятельств. Например, нельзя изменить того факта,- что электрическое освещение нужно в вечерние часы с наступлением темноты.

Энергетики по возможности принимают меры по выравниванию графика суммарной нагрузки потребителей. Так, вводится дифференцированная стоимость электроэнергии в зависимости от того, в какой период времени она потребляется. Если электроэнергия потребляется в моменты максимумов нагрузки, то и стоимость ее устанавливается выше. Это повышает заинтересованность потребителей в таких перестройках работы, которые бы способствовали уменьшению электрической нагрузки в моменты максимумов потребления в энергосистеме. В целом возможности выравнивания потребления электроэнергии невелики. Следовательно, электроэнергетические системы должны быть достаточно маневренными, способными быстро изменять мощность электростанций. В промышленно развитых странах большая часть электроэнергии (80%) вырабатывается на ТЭС, для которых наиболее желателен равномерный график нагрузки. На агрегатах этих станций невыгодно проводить регулирование мощности. Обычные паровые котлы и турбины на этих станциях допускают изменение нагрузки всего на 10--15% .

Периодические включения и отключения ТЭС не позволяют решить задачу регулирования мощности из-за большой продолжительности этих процессов. На запуск тепловой станции в лучшем случае требуются часы. Кроме того, работа крупных ТЭС в резко переменном режиме нежелательна, так как приводит к повышенному расходу топлива, повышенному износу теплосилового оборудования и, следовательно, снижению его надежности. Следует учесть также, что ТЭС с высокими параметрами пара имеют некоторые минимальные технически возможные рабочие мощности, составляющие 50--70% от, номинальной мощности оборудования. Все это относится не только к ТЭС, но и к АЭС. Поэтому в настоящее время и в ближайшем будущем дефицит в маневренных мощностях («пик» нагрузки) покрывается ГЭС, у которых набор полной мощности с нуля можно произвести за 1--2 мин. Однако в европейской части СССР степень использования экономически эффективных гидроэнергоресурсов уже превысила 40%. Оставшаяся неиспользованной часть ресурсов относится к периферийным районам и небольшим водотокам.

Регулирование мощности ГЭС производится следующим образом. В периоды времени, когда в системе имеются провалы нагрузки, ГЭС работают с незначительной мощностью и вода заполняет водохранилище. При этом запасается энергия. С наступлением пиков включаются агрегаты станции и вырабатывается энергия.

Накопление энергии в водохранилищах на равнинных реках приводит к затоплению обширных территорий, что во многих случаях крайне нежелательно. Небольшие реки малопригодны для регулирования мощности в системе, так как они не успевают заполнить водой водохранилище.

Задачу снятия пиков решают гидроаккумулирующие станции (ГАЭС), работающие следующим образом (рис. 2.23). В интервалы времени, когда электрическая нагрузка в объединенных системах минимальна, ГАЭС перекачивает воду из нижнего водохранилища в верхнее и потребляет при этом электроэнергию из системы (рис. 2.23, о). В режиме непродолжительных «пиков» -- максимальных значений нагрузки-- ГАЭС работает в генераторном режиме и расходует запасенную в верхнем водохранилище воду.

В европейской части СССР возможно сооружение до 200 ГАЭС. В энергосистемах, расположенных в центральной, Северо-западной и южной Частях, где имеется наибольший дефицит маневренной мощности, естественные перепады рельефа позволяют сооружать станции с небольшим напором (80--110 м).

На первых ГАЭС для выработки электроэнергии использовали турбины Г и генераторы Г, а для перекачки воды в верхний бассейн -- электрические двигатели Д и насосы Я (рис. 2.23,6). Такие станции называли четырехмашинными -- по числу устанавливаемых машин. В силу независимости работы генератора и насоса иногда четырехмашинная схема оказывается экономически наиболее выгодной. Совмещение функций генератора и двигателя привело к трехмашинной компоновке ГАЭС (рис. 2.23, 0).

ГАЭС стали особенно эффективными после появления обратимых гидротурбин, выполняющих функции и турбин, и насосов (рис. 2.23, г). Число машин при этом сведено к двум. Однако станции с двухмашинной компоновкой имеют более низкое значение КПД из-за необходимости создавать в насосном режиме примерно в 1,3--1,4 раза больший напор на преодоление трения в водоводах. В генераторном режиме напор из-за трения в водоводах меньше. Для того чтобы агрегат одинаково эффективно работал как в генераторном, так и в насосном режимах, можно в насосном режиме увеличить его частоту вращения.

Применение разных частот вращения в обратимых генераторах привело к усложнению и удорожанию их конструкции.

КПД агрегата можно повысить также, устанавливая в насосном режиме более крутой угол наклона лопастей турбины.

При реверсивной работе агрегатов возникает ряд технических и эксплуатационных трудностей, например, связанных с охлаждением. Предназначенные для охлаждения вентиляторы успешно работают только в одном направлении вращения.

Перспективы применения ГАЭС во многом зависят от КПД, под которым применительно к этим станциям понимается отношение энергии, выработанной станцией в генераторном режиме, к энергии, израсходованной в насосном режиме.

Первые ГАЭС в начале XX в имели КПД не выше 40%, у современных ГАЭС КПД составляет 70--75%. К преимуществам ГАЭС кроме относительно высокого значения КПД относится также и низкая стоимость строительных работ. В отличие от обычных ГЭС здесь нет необходимости перекрывать реки, возводить высокие плотины с длинными туннелями и т. п. Ориентировочно на 1 кВт установленной мощности на крупных речных ГЭС требуется 10 м3 бетона, а на крупных ГАЭС - всего лишь несколько десятых кубометров бетона.

ГАЭС и ветровые электростанции, отличающиеся непостоянством вырабатываемой мощности, удачно сочетаются между собой При этом трудно рассчитывать на мощность ветровых станций в часы «пик» в энергосистеме. Если же вырабатываемую на этих станциях электроэнергию запасать на ГАЭС в виде воды, перекачиваемой в верхний бассейн, то выработанная на ветровых "электростанциях за какой-либо промежуток времени энергия может быть использована в соответствии с потребностями системы

Преимущества ГАЭС позволяют широко применять их для аккумулирования энергии.

электростанция термодинамический паротурбинный котел

Механические установки, аккумулирующие энергию. В пиковые часы потребления электроэнергии наряду с ГАЭС можно использовать супермаховики.

Супермаховик -- это маховик, который можно разгонять до огромной скорости, не боясь его разрыва. Он состоит из концентрических колец, навитых из кварцевого волокна и насаженных друг на друга с небольшими зазорами, заполненными эластичным веществом типа резины для предохранения обода от расслоения. Супермаховик соединен с валом генератора и помещен в герметичный корпус, в котором поддерживается вакуум. Устройство работает как генератор, когда возрастает потребление энергии в системе, и как электродвигатель, когда энергию целесообразно аккумулировать. По некоторым расчетам, затраты на 1 кВт установленной мощности супермаховика меньше, чем при гидроаккумулировании. Разработан проект супермаховика массой 1,96 МН и диаметром 5 м, в котором предусматривается накопление энергии до 20 МВт-ч. Рабочая частота вращения супермаховика - 3500 мин-1.

На рис. 2.24 показан проект установки с аккумулирующим энергию супермаховиком.

Возможны аккумулирующие установки, создающие запас сжатого воздуха. Энергию этого воздуха Э» можно использовать для приведения в действие турбин, вращающих генераторы, которые в пик нагрузки будут отдавать энергию Эв в сеть.

Электрические установки, аккумулирующие электро-энергию. Такие установки в виде индуктивных или емкостных накопителей могут подключаться через выпрямитель к сети переменного тока. Индуктивные -- получают заряд

ЭL=LI2/2

где I -- выпрямленный ток; L --индуктивность. Емкостной -- заряжается до величины

ЭC=CU2/2

где U -- выпрямленное напряжение; С -- емкость конденсаторов.

Для уменьшения потерь и длительного сохранения накопленной энергии применяются специальные мероприятия (охлаждение, уменьшение активного сопротивления, увеличение L и С и т. д.). Накопленная энергия ЭL или Эс отдается в сеть через преобразователь в виде энергии переменного тока.

1.7 Приливные электрические станции

Энергия морских приливов, или, как иногда ее называют, «лунная энергия», известна человечеству со времен глубокой древности. Эта энергия еще в далекие исторические эпохи использовалась для приведения в движение различных механизмов, в особенности мельниц. В Германии с помощью энергии приливной волны 'Орошали поля, в Канаде -- пилили дрова. В Англии приливная водоподъемная машина служила в прошлом веке для снабжения Лондона водой.

Существует огромное количество остроумных проектов приливных технических установок. (Только во Франции к 1918 г. было опубликовано бол ее" 200 таких патентов. В начале XX в. предпринимались попытки сооружения мощных приливных электростанций. В США в 1935г. было начато строительство ПЭС Кводди мощностью 200 тыс. кВт. Вскоре строительство, на которое ушло 7 млн. долл., было прекращено из-за выявившейся высокой стоимости электроэнергии (на 33% больше стоимости на тепловой станции). По составленному в 1940г. в СССР проекту Кислогубская ПЭС вырабатывала бы электроэнергию стоимостью в 2 раза большей, чем у речных электростанций.

Приливные электрические станции (ПЭС) выгодно отличаются от ГЭС тем, что их работа определяется космическими явлениями и не зависит от многочисленных погодных условий, определяемых случайными факторами.

Наиболее существенный недостаток ПЭС -- неравномерность их работы. Неравномерность приливной энергии в течение лунных суток и лунного месяца, отличающихся от солнечных, не позволяет систематически использовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность работы ПЭС, совместив ее с ГАЭС. В то время, когда имеется избыточная мощность ПЭС, ГАЭС работает в насосном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в генераторном режиме работает ГАЭС, выдавая электроэнергию в систему. В техническом отношении такой npоект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин.

Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее остановке; в то время как ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранилище. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС.

ПЭС работают в условиях быстрого изменения напора, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана достаточно совершенная и компактная горизонтальная турбина двойного действия. Электрический генератор власть деталей турбины заключены в водонепроницаемую капсулу и весь гидроагрегат погружен в воду.

1.8 Магнитогидродинамическое преобразование энергии

К одной из центральных физико-технических задач энергетики относится создание магнитогидродинамикеских генераторов (МГД-генераторов), непосредственно преобразующих тепловую энергию в электрическую. Возможности практической реализации такого рода преобразования энергии в широких промышленных масштабах появляются в связи с успехами в атомной физике, физике плазмы, металлургии и ряде других областей.

Непосредственное преобразование тепловой энергии в электрическую позволяет существенно повысить эффективность использования топливных ресурсов.

Для современной электроэнергетики большое значение имеет открытый Фарадеем закон электромагнитной индукции, который утверждает, что в проводнике, движущемся в магнитном поле, индуцируется ЭДС. При этом проводник может быть твердым, жидким или газообразным. Область науки, изучающая взаимодействие между магнитным полем и токопроводящими жидкостями или газами, называется магнитогидродинамикой.

Еще Кельвин показал, что движение в устье реки соленой воды в магнитном поле Земли вызывает появление ЭДС. Схема такого МГД-генёратора Кельвина показана на рис. 3

магнитной индукции сила тока в проводниках 1, присоединенных к пластинам 2, опущенным в воду вдоль берегов реки, пропорциональна индукции магнитного поля. Земли и скорости течения соленой морской воды в реке. При изменении направления течения воды в реке изменялось также и направление электрического тока в проводниках между пластинами.

Принципиальная схема действия современного МГД-генератора (рис. 3.2) мало отличается от приведенной на рис. 3.1. В рассматриваемой схеме между металлическими пластинам, расположенными в сильном магнитном поле, пропускается струя ионизированного газа, обладающего кинетической энергией направленного движения частиц. При этом в соответствии с законом электромагнитной индукции появляется ЭДС, вызывающая протекание электрического тока между электродами внутри канала генератора и во внешней цепи. Поток ионизированного газа -- плазмы -- тормозится под действием электродинамических сил, возникающих при взаимодействии протекающего в плазме тока и магнитного потока, Можно провести аналогию между возникающими силами и силами торможения, действующими со стороны рабочих лопаток паровых и газовых турбин на частички пара или газа. Преобразование энергии и происходит путем совершения работы по преодолению сил торможения.

Если какой-либо газ нагреть до высокой температуры (я*3000°С), увеличив тем самым его внутреннюю энергию и превратив в электропроводное вещество, то при последующем расширении газа в рабочих каналах МГД-генератора произойдет прямое преобразование тепловой энергии в электрическую.

МГД-генератор с паросиловой установкой. Принципиальная схема МГД-генератора с паросиловой установкой показана на рис. 3.3. В камере сгорания сжигается органическое топливо, получаемые при этом продукты в плазменном состоянии с добавлением присадок направляются в расширяющийся канал МГД-генератора. Сильное магнитное поле создается мощными электромагнитами. Температура газа в канале генератора должна быть не ниже 2000°С, а в камере сгорания 2500--2800°С. Необходимость ограничения минимальной температуры газов, покидающих МГД-генерато-ры, вызывается настолько значительным уменьшением электропроводности газов при температурах ниже 2000°С, что у них практически исчезает магнитогидро-динамическое взаимодействие с магнитным полем.

Теплота отработанных в МГД-генераторах газов вначале используется для подогрева воздуха, подаваемого в камеру сгорания топлива, и, следовательно, повышения эффективности процесса его сжигания. Затем в паросиловой установке теплота расходуется на образование пара и доведение его параметров до необходимых величин.

Выходящие из канала МГД-генератора газы имеют температуру примерно 2000°С, а современные теплообменники, к сожалению, могут работать при температурах, не превышающих 800°С, поэтому при охлаждении газов часть теплоты теряется.

На рис. 3.4 (см. форзац II) схематически показаны основные элементы МГД-электростанции с паросиловой установкой и их взаимосвязи.

Трудности в создании МГД-генераторов состоят в получении материалов необходимой прочности. Несмотря на статические условия работы, к материалам предъявляют высокие требования, так как они должны длительно работать в агрессивных средах при высоких температурах (2500--2800°С). Для нужд ракетной техники созданы материала, ^способные работать в таких условиях, однако они могут работать непродолжительное время -^ в течение минут. Продолжительность работы промышленных энергетических установок должна исчисляться, по крайней мере, месяцами.

Жаростойкость зависит не только от материалов, но и от среды. Например, вольфрамовая нить в электрической лампе при температуре 2500--2700°С может работать в вакууме или среде нейтрального газа несколько тысяч часов, а в воздухе расплавляется через несколько секунд.


Подобные документы

  • Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.

    реферат [1,3 M], добавлен 27.05.2010

  • Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.

    реферат [3,5 M], добавлен 25.10.2013

  • Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.

    презентация [247,7 K], добавлен 23.03.2016

  • Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.

    презентация [1,2 M], добавлен 15.05.2016

  • Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.

    курсовая работа [7,5 M], добавлен 24.06.2009

  • Назначение и основные типы котлов. Устройство и принцип действия простейшего парового вспомогательного водотрубного котла. Подготовка и пуск котла, его обслуживание во время работы. Вывод парового котла из работы. Основные неисправности паровых котлов.

    реферат [643,8 K], добавлен 03.07.2015

  • Описание принципиальной тепловой схемы паротурбинной электростанции и определение термического коэффициента её полезного действия. Превращения энергии на ТЭЦ и характеристика технологической схемы котел – турбина. Устройство двухвальных турбогенераторов.

    реферат [1,1 M], добавлен 25.10.2013

  • Ознакомление с предприятием по выработке тепловой и электрической энергии. Безопасность труда на энергопредприятиях; средства защиты человека от вредных производственных факторов. Изучение тепловой схемы установки, устройства паровых турбин и котлов.

    курсовая работа [7,6 M], добавлен 04.02.2014

  • История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.

    реферат [196,1 K], добавлен 30.04.2010

  • Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация [11,2 M], добавлен 23.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.