Жидкость и силы действующие на нее
Краткая история развития гидравлики. Особенность движения жидкостей в открытых и закрытых руслах. Исследование схемы к определению давлений. Плотность, как одна из основных механических характеристик жидкого вещества. Силы поверхностного натяжения.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 06.07.2016 |
Размер файла | 98,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Предмет гидравлики и краткая история ее развития
Решение различных технических проблем, связанных с вопросами движения жидкостей в открытых и закрытых руслах, а также с вопросами силового воздействия жидкости на стенки сосудов или обтекаемые жидкостью твердые тела привело к созданию обширной науки называемой гидромеханикой, которая делится на два раздела: техническая гидромеханика и теоретическая механика жидкости и газа (рис.1.1).
Рис. 1.1. Разделы гидромеханики
Гидравлика (техническая механика жидкости) - прикладная часть гидромеханики, которая использует те или иные допущения для решения практических задач. Она обладает сравнительно простыми методиками расчета по сравнению с теоретической механикой жидкости, где применяется сложный математический аппарат. Однако гидравлика дает достаточную для технических приложений характеристику рассматриваемых явлений.
1.1 Краткая история развития гидравлики
Исторически гидравлика является одной из самых древних наук в мире. Археологические исследования показывают, что еще за 5000 лет до нашей эры в Китае, а затем в других странах древнего мира найдены описания устройства различных гидравлических сооружений, представленные в виде рисунков (первых чертежей). Естественно, что никаких расчетов этих сооружений не производилось, и все они были построены на основании практических навыков и правил.
Первые указания о научном подходе к решению гидравлических задач относятся к 250 году до н.э., когда Архимедом был открыт закон о равновесии тела, погруженного в жидкость. Потом на протяжении 1500 лет особых изменений гидравлика не получала. Наука в то время почти совсем не развивалась, образовался своего рода застой. И только в XVI-XVII веках нашей эры в эпоху Возрождения, или как говорят историки Ренессанса, появились работы Галилея, Леонардо да Винчи, Паскаля, Ньютона, которые положили серьезное основание для дальнейшего совершенствования гидравлики как науки.
Однако только основополагающие работы академиков Петербургской академии наук Даниила Бернулли и Леонарда Эйлера живших в XVIII веке, создали прочный фундамент, на котором основывается современная гидравлика. В XIX-XX веках существенный вклад в гидродинамику внес "отец русской авиации" Николай Егорович Жуковский.
Роль гидравлики в современном машиностроении трудно переоценить. Любой автомобиль, летательный аппарат, морское судно не обходится без применения гидравлических систем. Добавим сюда строительство плотин, дамб, трубопроводов, каналов, водосливов. На производстве просто не обойтись без гидравлических прессов, способных развивать колоссальные усилия. А вот интересный факт из истории строительства Эйфелевой башни. Перед тем как окончательно установить многотонную металлоконструкцию башни на бетонные основания, ей придали строгое вертикальное положение с помощью четырех гидравлических прессов, установленных под каждую опору.
Гидравлика преследует человека повсюду: на работе, дома, на даче, в транспорте. Сама природа подсказала человеку устройство гидравлических систем. Сердце - насос, печень - фильтр, почки - предохранительные клапаны, кровеносные сосуды - трубопроводы, общая длина которых в человеческом организме около 100 000 км. Наше сердце перекачивает за сутки 60 тонн крови (это целая железнодорожная цистерна!).
1.2 Жидкость и силы действующие на нее
Жидкостью в гидравлике называют физическое тело способное изменять свою форму при воздействии на нее сколь угодно малых сил. Различают два вида жидкостей: жидкости капельные и жидкости газообразные (рис.1.2). Капельные жидкости представляют собой жидкости в обычном, общепринятом понимании этого слова (вода, нефть, керосин, масло и.т.д.). Газообразные жидкости - газы, в обычных условиях представляют собой газообразные вещества (воздух, кислород, азот, пропан и т.д.).
Рис. 1.2. Виды жидкостей
Основной отличительной особенностью капельных и газообразных жидкостей является способность сжиматься (изменять объем) под воздействием внешних сил. Капельные жидкости (в дальнейшем просто жидкости) трудно поддаются сжатию, а газообразные жидкости (газы) сжимаются довольно легко, т.е. при воздействии небольших усилий способны изменить свой объем в несколько раз (рис.1.3).
Рис. 1.3. Сжатие жидкостей и газов
В гидравлике рассматриваются реальная и идеальная жидкости. Идеальная жидкость в отличие от реальной жидкости не обладает внутренним трением, а также трением о стенки сосудов и трубопроводов, по которым она движется. Идеальная жидкость также обладает абсолютной несжимаемостью. Такая жидкость не существует в действительности, и была придумана для облегчения и упрощения ряда теоретических выводов и исследований.
На жидкость постоянно воздействуют внешние силы, которые разделяют на массовые и поверхностные.
Массовые: силы тяжести и инерции. Сила тяжести в земных условиях действует на жидкость постоянно, а сила инерции только при сообщении объему жидкости ускорений (положительных или отрицательных).
Поверхностные: обусловлены воздействием соседних объемов жидкости на данный объем или воздействием других тел.
Рассмотрим сосуд, наполненный жидкостью. Если выделить в нем бесконечно малый объем жидкости, то на этот объем будут действовать силы со стороны соседних таких же бесконечно малых объемов (рис.1.4). Кроме этого на свободную поверхность жидкости действует сила атмосферного давления Pатм и силы со стороны стенок сосуда.
Если на жидкость действует какая-то внешняя сила, то говорят, что жидкость находится под давлением. Обычно для определения давления жидкости, вызванного воздействием на нее поверхностных сил, применяется формула
где F - сила, действующая на жидкость, Н (ньютоны);
S - площадь, на которую действует эта сила, мІ (кв.метры).
Если давление Р отсчитывают от абсолютного нуля, то его называют абсолютным давлением Рабс. Если давление отсчитывают от атмосферного, то оно называется избыточным Ризб. Атмосферное давление постоянно Ра = 103 кПа (рис.1.5).
Рис. 1.5. Схема к определению давлений
За единицу давления в Международной системе единиц (СИ) принят паскаль - давление вызываемое силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 мІ:
1 Па = 1 Н/мІ = 10-3 кПа = 10-6 МПа.
Размерность давления обозначается как "Па" (паскаль), "кПа" (килопаскаль), "МПа" (мегапаскаль). В технике в настоящее время продолжают применять систему единиц МКГСС, в которой за единицу давления принимается 1 кгс/мІ.
1 Па = 0,102 кгс/мІ или 1 кгс/мІ = 9,81 Па.
1.3 Механические характеристики и основные свойства жидкостей
Основные механические характеристики
Одной из основных механических характеристик жидкости является ее плотность. Плотностью жидкости называют массу жидкости заключенную в единице объема.
Удельным весом называют вес единицы объема жидкости, который определяется по формуле:
С увеличением температуры удельный вес жидкости уменьшается.
Основные физические свойства
1. Сжимаемость - свойство жидкости изменять свой объем под действием давления. Сжимаемость жидкости характеризуется коэффициентом объемного сжатия, который определяется по формуле
где V - первоначальный объем жидкости,
dV - изменение этого объема, при увеличении давления на величину dP.
Величина обратная вV называется модулем объемной упругости жидкости:
Модуль объемной упругости не постоянен и зависит от давления и температуры. При гидравлических расчетах сжимаемостью жидкости обычно пренебрегают и считают жидкости практически несжимаемыми. Сжатие жидкостей в основном обусловлено сжатием растворенного в них газа.
Иногда сжимаемость жидкостей полезна - ее используют в гидравлических амортизаторах и пружинах.
2. Температурное расширение - относительное изменение объема жидкости при увеличении температуры на 1°С при Р = const. Характеризуется коэффициентом температурного расширения
Поскольку для капельных жидкостей коэффициент температурного расширения ничтожно мал, то при практических расчетах его не учитывают.
3. Сопротивление растяжению. Особыми физическими опытами было показано, что покоящаяся жидкость (в частности вода, ртуть) иногда способна сопротивляться очень большим растягивающим усилиям. Но в обычных условиях такого не происходит, и поэтому считают, что жидкость не способна сопротивляться растягивающим усилиям.
Рис. 1.6. Силы поверхностного натяжения
Сжимаемость понижает жесткость гидропривода, т.к., на сжатие затрачивается энергия. Сжимаемость может явиться причиной возникновения автоколебаний в гидросистеме, создает запаздывание в срабатывании гидроаппаратуры и исполнительных механизмах.
4. Силы поверхностного натяжения - эти силы стремятся придать сферическую форму жидкости. Силы поверхностного натяжения обусловлены поверхностными силами и направлены всегда внутрь рассматриваемого объема перпендикулярно свободной поверхности жидкости. Рассмотрим бесконечно малый объем жидкости на свободной поверхности. На него будут действовать силы со стороны соседних объемов. В результате, если сложить вектора всех сил действующих на рассматриваемый объем, то суммарная составляющая сила будет направлена перпендикулярно внутрь рассматриваемого объема.
5. Вязкость жидкости - свойство жидкости сопротивляться скольжению или сдвигу ее слоев. Суть ее заключается в возникновении внутренней силы трения между движущимися слоями жидкости, которая определяется по формуле Ньютона
где S - площадь слоев жидкости или стенки, соприкасающейся с жидкостью, м2,
м- динамический коэффициент вязкости, или сила вязкостного трения, d /dy - градиент скорости, перпендикулярный к поверхности сдвига.
Отсюда динамическая вязкость равна
где ф - касательные напряжения жидкости, ф = T/S.
При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью (рис.1.7). Скорость уменьшается по мере уменьшения расстояния y от стенки. При этом при y = 0, скорость падает до нуля, а между слоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений ф.
Величина обратная динамическому коэффициенту вязкости (1/м) называется текучестью жидкости.
Рис. 1.7. Профиль скоростей при течении вязкой жидкости вдоль стенки
Отношение динамического коэффициента вязкости к плотности жидкости называется кинематическим коэффициентом вязкости:
Величина н (произносится "ню") равная 1смІ/с называется стоксом (Ст), а 0,01 Ст - 1 сантистоксом (сСт).
Процесс определения вязкости называется вискозиметрией, а приборы, которыми она определяется вискозиметрами. Помимо оценки вязкости с помощью динамического и кинематического коэффициентов пользуются условной вязкостью - градусы Энглера ( Е). Вязкостью, выраженной в градусах Энглера, называется отношение времени истечения 200 смі испытуемой жидкости через капилляр d = 2,8 мм к времени истечения такого же объема воды при t = 20 С
Такой прибор называется вискозиметром Энглера. Для пересчета градусов Энглера в стоксы для минеральных масел применяется формула
Таким образом, для оценки вязкости жидкости можно использовать три величины, которые связаны межу собой
Рис. 1.8. Способы оценки вязкости жидкости
Вязкость жидкости зависит от температуры и от давления. При повышении температуры вязкость жидкости уменьшается и наоборот. У газов наблюдается обратное явление: с повышением температуры вязкость увеличивается, с понижением температуры - уменьшается.
6. Пенообразование. Выделение воздуха из рабочей жидкости при падении давления может вызвать пенообразование. На интенсивность пенообразования оказывает влияние содержащаяся в рабочей жидкости вода: даже при ничтожном количестве воды (менее 0,1% по массе рабочей жидкости) возникает устойчивая пена. Образование и стойкость пены зависят от типа рабочей жидкости, от ее температуры и размеров пузырьков, от материалов и покрытий гидроаппаратуры. Особенно пенообразование происходит интенсивно в загрязненных жидкостях и бывших в эксплуатации. При температуре жидкости свыше 70 С происходит быстрый спад пены.
7. Химическая и механическая стойкость. Характеризует способность жидкости сохранять свои первоначальные физические свойства при эксплуатации и хранении. жидкость давление плотность натяжение
Окисление жидкости сопровождается выпадением из нее смол и шлаков, которые откладываются на поверхности элементов гидропривода в виде твердого налета. Снижается вязкость и изменяется цвет жидкости. Продукты окисления вызывают коррозию металлов и уменьшают надежность работы гидроаппаратуры. Налет вызывает заклинивание подвижных соединений, плунжерных пар, дросселирующих отверстий, разрушение уплотнений и разгерметизацию гидросистемы.
8. Совместимость. Совместимость рабочих жидкостей с конструкционными материалами и особенно с материалами уплотнений имеет очень большое значение. Рабочие жидкости на нефтяной основе совместимы со всеми металлами, применяемыми в гидромашиностроении, и плохо совместимы с уплотнениями, изготовленными из синтетической резины и из кожи. Синтетические рабочие жидкости плохо совмещаются с некоторыми конструкционными материалами и не совместимы с уплотнениями из маслостойкой резины.
9. Испаряемость жидкости. Испаряемость свойственна всем капельным жидкостям, однако интенсивность испарения неодинакова у различных жидкостей и зависит от условий в которых она находится: от температуры, от площади испарения, от давления, и от скорости движения газообразной среды над свободной поверхностью жидкости (от ветра).
10. Растворимость газов в жидкостях характеризуется объемом растворенного газа в единице объема жидкости и определяется по закону Генри:
где VГ - объем растворенного газа; VЖ - объем жидкости; k - коэффициент растворимости; Р - давление; Ра - атмосферное давление.
Коэффициент k имеет следующие значения при 20 С: для воды 0,016, керосина 0,13, минеральных масел 0,08, жидкости АМГ-10 - 0,1. При понижении давления выделяется растворимый в жидкости газ. Это явление может отрицательно сказываться на работе гидросистем.
1.1. Что такое гидромеханика?
а) наука о движении жидкости;
б) наука о равновесии жидкостей;
в) наука о взаимодействии жидкостей;
г) наука о равновесии и движении жидкостей.
1.2. На какие разделы делится гидромеханика?
а) гидротехника и гидрогеология;
б) техническая механика и теоретическая механика;
в) гидравлика и гидрология;
г) механика жидких тел и механика газообразных тел.
1.3. Что такое жидкость?
а) физическое вещество, способное заполнять пустоты;
б) физическое вещество, способное изменять форму под действием сил;
в) физическое вещество, способное изменять свой объем;
г) физическое вещество, способное течь.
1.4. Какая из этих жидкостей не является капельной?
а) ртуть;
б) керосин;
в) нефть;
г) азот.
1.5. Какая из этих жидкостей не является газообразной?
а) жидкий азот;
б) ртуть;
в) водород;
г) кислород;
1.6. Реальной жидкостью называется жидкость
а) не существующая в природе;
б) находящаяся при реальных условиях;
в) в которой присутствует внутреннее трение;
г) способная быстро испаряться.
1.7. Идеальной жидкостью называется
а) жидкость, в которой отсутствует внутреннее трение;
б) жидкость, подходящая для применения;
в) жидкость, способная сжиматься;
г) жидкость, существующая только в определенных условиях.
1.8. На какие виды разделяют действующие на жидкость внешние силы?
а) силы инерции и поверхностного натяжения;
б) внутренние и поверхностные;
в) массовые и поверхностные;
г) силы тяжести и давления.
1.9. Какие силы называются массовыми?
а) сила тяжести и сила инерции;
б) сила молекулярная и сила тяжести;
в) сила инерции и сила гравитационная;
г) сила давления и сила поверхностная.
1.10. Какие силы называются поверхностными?
а) вызванные воздействием объемов, лежащих на поверхности жидкости;
б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
в) вызванные воздействием давления боковых стенок сосуда;
г) вызванные воздействием атмосферного давления.
1.11. Жидкость находится под давлением. Что это означает?
а) жидкость находится в состоянии покоя;
б) жидкость течет;
в) на жидкость действует сила;
г) жидкость изменяет форму.
1.12. В каких единицах измеряется давление в системе измерения СИ?
а) в паскалях;
б) в джоулях;
в) в барах;
г) в стоксах.
1.13. Если давление отсчитывают от абсолютного нуля, то его называют:
а) давление вакуума;
б) атмосферным;
в) избыточным;
г) абсолютным.
1.14. Если давление отсчитывают от относительного нуля, то его называют:
а) абсолютным;
б) атмосферным;
в) избыточным;
г) давление вакуума.
1.15. Если давление ниже относительного нуля, то его называют:
а) абсолютным;
б) атмосферным;
в) избыточным;
г) давление вакуума.
1.16. Какое давление обычно показывает манометр?
а) абсолютное;
б) избыточное;
в) атмосферное;
г) давление вакуума.
1.17. Чему равно атмосферное давление при нормальных условиях?
а) 100 МПа;
б) 100 кПа;
в) 10 ГПа;
г) 1000 Па.
1.18. Давление определяется
а) отношением силы, действующей на жидкость к площади воздействия;
б) произведением силы, действующей на жидкость на площадь воздействия;
в) отношением площади воздействия к значению силы, действующей на жидкость;
г) отношением разности действующих усилий к площади воздействия.
1.19. Массу жидкости заключенную в единице объема называют
а) весом;
б) удельным весом;
в) удельной плотностью;
г) плотностью.
1.20. Вес жидкости в единице объема называют
а) плотностью;
б) удельным весом;
в) удельной плотностью;
г) весом.
1.21. При увеличении температуры удельный вес жидкости
а) уменьшается;
б) увеличивается;
г) сначала увеличивается, а затем уменьшается;
в) не изменяется.
1.22. Сжимаемость это свойство жидкости
а) изменять свою форму под действием давления;
б) изменять свой объем под действием давления;
в) сопротивляться воздействию давления, не изменяя свою форму;
г) изменять свой объем без воздействия давления.
1.23. Сжимаемость жидкости характеризуется
а) коэффициентом Генри;
б) коэффициентом температурного сжатия;
в) коэффициентом поджатия;
г) коэффициентом объемного сжатия.
1.24. Коэффициент объемного сжатия определяется по формуле
1.29. Вязкость жидкости это
а) способность сопротивляться скольжению или сдвигу слоев жидкости;
б) способность преодолевать внутреннее трение жидкости;
в) способность преодолевать силу трения жидкости между твердыми стенками;
г) способность перетекать по поверхности за минимальное время.
1.30. Текучестью жидкости называется
а) величина прямо пропорциональная динамическому коэффициенту вязкости;
б) величина обратная динамическому коэффициенту вязкости;
в) величина обратно пропорциональная кинематическому коэффициенту вязкости;
г) величина пропорциональная градусам Энглера.
1.31. Вязкость жидкости не характеризуется
а) кинематическим коэффициентом вязкости;
б) динамическим коэффициентом вязкости;
в) градусами Энглера;
г) статическим коэффициентом вязкости.
1.32. Кинематический коэффициент вязкости обозначается греческой буквой
а) н;
б) м;
в) з;
г) ф.
1.33. Динамический коэффициент вязкости обозначается греческой буквой
а) н;
б) м;
в) з;
г) ф.
1.34. В вискозиметре Энглера объем испытуемой жидкости, истекающего через капилляр равен
а) 300 см3;
б) 200 см3;
в) 200 м3;
г) 200 мм3.
1.35. Вязкость жидкости при увеличении температуры
а) увеличивается;
б) уменьшается;
в) остается неизменной;
г) сначала уменьшается, а затем остается постоянной.
1.36. Вязкость газа при увеличении температуры
а) увеличивается;
б) уменьшается;
в) остается неизменной;
г) сначала уменьшается, а затем остается постоянной.
1.37. Выделение воздуха из рабочей жидкости называется
а) парообразованием;
б) газообразованием;
в) пенообразованием;
г) газовыделение.
1.38. При окислении жидкостей не происходит
а) выпадение смол;
б) увеличение вязкости;
в) изменения цвета жидкости;
г) выпадение шлаков.
1.39. Интенсивность испарения жидкости не зависит от
а) от давления;
б) от ветра;
в) от температуры;
г) от объема жидкости.
1.40. Закон Генри, характеризующий объем растворенного газа в жидкости записывается в виде
Размещено на Allbest.ru
Подобные документы
Изучение явления поверхностного натяжения и методика его определения. Особенности определения коэффициента поверхностного натяжения с помощью торсионных весов. Расчет коэффициента поверхностного натяжения воды и влияние примесей на его показатель.
презентация [1,5 M], добавлен 01.04.2016Виды вещества. Реакция твердого тела, газа и жидкости на действие сил. Силы, действующие в жидкостях. Основное уравнение гидростатики. Дифференциальное уравнение равновесия жидкости. Определение силы давления столба жидкости на плоскую поверхность.
презентация [352,9 K], добавлен 28.12.2013Исследование зависимости поверхностного натяжения жидкости от температуры, природы граничащей среды и растворенных в жидкости примесей. Повышение давления газов над жидкими углеводородами и топливом. Расчет поверхностного натяжения системы "жидкость-пар".
реферат [17,6 K], добавлен 31.03.2015Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.
презентация [220,4 K], добавлен 28.09.2013История развития гидравлики. Жидкости и их основные физические свойства. Расчет напорных и безнапорных потоков. Методы измерения расхода воды. Течения в руслах, в канализационных и сливных системах ливнёвки, в водопроводах жилых помещений, трубопроводах.
реферат [1,0 M], добавлен 30.03.2015Сущность и условия кипения жидкостей. Законы, действующие на пар, образующийся при этом внутри них. Поведение перегретой жидкости. Получение и свойства пересыщенного пара. Исследование кинетики в СССР. Научная деятельность кафедры молекулярной физики.
реферат [13,9 K], добавлен 16.01.2014Понятия и устройства измерения абсолютного и избыточного давления, вакуума. Определение силы и центра давления жидкости на цилиндрические поверхности. Границы ламинарного, переходного и турбулентного режимов движения. Уравнение неразрывности для потока.
контрольная работа [472,2 K], добавлен 08.07.2011Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения. Метод проволочной рамки. Роль и проявления поверхностного натяжения в жизни.
реферат [572,8 K], добавлен 23.04.2009Сущность и характерные особенности поверхностного натяжения жидкости. Теоретическое обоснование различных методов измерения коэффициента поверхностного натяжения по методу отрыва капель. Описание устройства, принцип действия и назначение сталагмометра.
реферат [177,1 K], добавлен 06.03.2010Изучение влияния силы тяжести и силы Архимеда на положение тела в воде. Взаимосвязь плотности жидкости и уровня погружения объекта. Определение расположения керосина и воды в одном сосуде. Понятие водоизмещения судна, обозначение предельных ватерлиний.
презентация [645,1 K], добавлен 05.03.2012