Принцип Даламбера
Принцип Даламбера как метод решения задач, при котором уравнения динамики принимают вид уравнений статики. Запись принципа Даламбера для несвободной материальной точки. Формулы для определения моментов сил инерции относительно неподвижной оси вращения.
Рубрика | Физика и энергетика |
Предмет | Физика |
Вид | реферат |
Язык | русский |
Прислал(а) | Оля |
Дата добавления | 27.03.2016 |
Размер файла | 809,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Решения задач динамики системы. Механическая система, находящаяся в равновесии под действием плоской произвольной системы сил. Реакции двух закрепленных точек твердого тела, возникающие при вращении твердого тела вокруг оси. Применение принципа Даламбера.
методичка [1,8 M], добавлен 03.12.2011Плоская система сходящихся сил. Момент пары сил относительно точки и оси. Запись уравнения движения в форме уравнения равновесия (метод кинетостатики). Принцип Даламбера. Проекция силы на координатную ось. Расчетная формула при растяжении и сжатии.
контрольная работа [40,6 K], добавлен 09.10.2010Содержание и значение теоремы моментов, об изменении количества движения точки. Работа силы и принципы ее измерения. Теорема об изменении кинетической энергии материальной точки. Несвободное движение точки (принцип Даламбера), описание частных случаев.
презентация [515,7 K], добавлен 26.09.2013Принцип можливих переміщень і загальне рівняння механіки. Принцип Даламбера і методика розв’язування задач. Розв’язування задач за принципом можливих переміщень. Приклади розв’язування задач. Система матеріальних точок або тіл. Число степенів вільності.
курсовая работа [179,6 K], добавлен 12.03.2009Нахождение закона движения материальной точки на участке согласно заданным условиям. Решение уравнения по изменению кинетической энергии. Определение реакции подпятника и подшипника при помощи принципа Даламбера, пренебрегая весом вертикального вала.
контрольная работа [653,1 K], добавлен 27.07.2010Различие силы тяжести и веса. Момент инерции относительно оси вращения. Уравнение моментов для материальной точки. Абсолютно твердое тело. Условия равновесия, инерция в природе. Механика поступательного и вращательно движения относительно неподвижной оси.
презентация [155,5 K], добавлен 29.09.2013Применение дифференциальных уравнений к изучению движения механической системы. Описание теоремы об изменении кинетической энергии, принципа Лагранжа–Даламбера (общего уравнения динамики), уравнения Лагранжа второго рода, теоремы о движении центра масс.
курсовая работа [701,6 K], добавлен 15.10.2014Составление уравнений равновесия пластины и треугольника. Применение теоремы Вариньона для вычисления моментов сил. Закон движения точки и определение ее траектории. Формула угловой скорости колеса и ускорения тела. Основные положения принципа Даламбера.
контрольная работа [1,5 M], добавлен 04.03.2012Виды систем: неизменяемая, с идеальными связями. Дифференциальные уравнения движения твердого тела. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции системы. Динамические реакции, действующие на ось вращения тела.
презентация [1,6 M], добавлен 26.09.2013Расчетная схема балки. Закон движения точки. Определение составляющих ускорения. Кинематические параметры системы. Угловая скорость шкива. Плоская система сил. Определение сил инерции стержня и груза. Применение принципа Даламбера к вращающейся системе.
контрольная работа [307,9 K], добавлен 04.02.2013