Измерение длины световой волны с помощью бипризмы Френеля
Свет и электромагнитные волны. Процесс интерференции световой волны. Определение интерференции света от двух когерентных источников. Описание и основные характеристики бипризмы Френеля. Вычисления ширины интерференционной полосы и величины длины волны.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 24.03.2016 |
Размер файла | 38,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ИЗМЕРЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ БИПРИЗМЫ ФРЕНЕЛЯ
Введение
Свет представляет собой электромагнитные волны. Как и всякие волны, световые волны могут интерферировать. Интерференцией света называется сложение световых пучков, ведущее к образованию светлых и темных полос, которые можно наблюдать визуально.
Если две световые волны придут в одну точку пространства в одинаковой фазе, они будут усиливать друг друга. В этой точке образуется светлый участок интерференционной картины. В тех же точках пространства, в которые волны приходят в противоположных фазах, они будут ослаблять друг друга и там будет темный участок.
Таким образом, результат интерференции зависит от разности фаз интерферирующих волн. Чтобы картина интерференции в каждой точке пространства не менялась со временем, необходимо, чтобы разность фаз была постоянной. В противном случае в каждой точке пространства волны будут то усиливать, то ослаблять друг друга, а глаз воспринимая усредненную картину, не обнаружит интерференционных полос. Следовательно, наблюдать интерференционную картину можно лишь в том случае, если интерферирующие волны имеют строго одинаковую частоту и постоянную разность фаз.
Источники света и испускаемые ими лучи, удовлетворяющие указанным требованиям, называются когерентными. Только когерентные источники света дают стабильные во времени интерференционные полосы.
1. ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ
Рассмотрим интерференцию света от двух когерентных источников S1 и S2, расстояние между которыми равно d (рис.1).
Проведем перпендикулярно отрезку S1 S2 через его середину прямую OA. Возьмем точку P на прямой АВ, параллельной S1 S2 и обозначим OA через а, а АР - через х.
Тогда по теореме Пифагора:
, (1)
где и - пути, которые пройдут лучи света от источников
и до точки , в которой наблюдается интерференция. Из уравнений (1) следует
, или (2)
откуда:
, (3)
где - разность хода между интерферирующими лучами.
Если и малы по сравнению с , то приближенно
. (4)
Если величина равна нечетному числу полуволн, то световые волны придут в точку в противофазе и погасят друг друга, интенсивность в этой точке будет минимальной. Если же равна четному числу полуволн, то световые волны придут в точку в одинаковых фазах и усилят друг друга - интенсивность будет максимальной.
Условие минимума и, соответственно, максимума интенсивности будет:
, (5)
где ; - длина волны.
В точках
(6)
будут светлые участки интерференционной картины, а в точках
- (7)
- темные участки интерференционной картины. В результате в плоскости АВ будут наблюдаться светлые и темные полосы.
Расстояние между центрами соседних -й и -й светлых полос составит
. (8)
Такое же расстояние будет и между центрами темных полос
2. ОПИСАНИЕ УСТАНОВКИ
Бипризма Френеля (рис.2) состоит из двух остроугольных призм, сложенных основаниями. Обычно обе призмы изготовляются из одного куска стекла и имеют очень малые преломляющие углы и . В сечении бипризма Френеля представляет собой равнобедренных треугольник с углом , близким к .
Свет от монохроматического источника (например, от узкой освещенной щели, перпендикулярной плоскости чертежа) падает на бипризму и преломляется в ней. В заштрихованной области за бипризмой преломленные пучки складываются т.е. интерферируют и образующуюся интерференционную картину, состоящую из светлых и темных полос, можно наблюдать с помощью микроскопа. Все происходит так, будто интерферирующие пучки света исходят из точек и . В этих точках находятся мнимые источники, образованные действительным источником света . Эти два мнимых источника являются когерентными.
Измерив расстояния (между мнимыми источниками света и ), расстояние от источников света до плоскости наблюдения, а также (расстояние между соседними полосами), можно по формуле (8) вычислить длину волны , испускаемую источником света.
Схема рабочей установки (рис.3) включает осветитель 1, щель 2, светофильтр 3, бипризму Френеля 4 и измерительный микроскоп 5.
Щель и бипризма укреплены на одном рейтере. Бипризма вставлена в специальную подставку. Линзу L устанавливают на оптическую скамью только для измерения величины расстояния между мнимыми источниками света d и величины расстояния от мнимых источников света до фокальной плоскости микроскопа а. При измерении расстояния между интерференционными полосами линзу не используют и ее снимают с оптической скамьи.
Расстояние между светлыми полосами интерференции определяется измерительным микроскопом 5. Он укреплен в рейтере и может передвигаться микрометрическим винтом в направлении, перпендикулярном оптической оси.
Для точного измерения расстояний имеются вертикальные визирные штрихи, которые можно наблюдать в окуляре микроскопа одновременно с измеряемым объектом. Окуляр должен быть сфокусирован по глазу наблюдателя так, чтобы штрихи были видны четко. Перемещая микроскоп с помощью микрометрического винта перпендикулярно оптической оси установки, определяют положения микроскопа по шкале (цена одного деления 1 мм) и более точно по барабану микрометрического винта (цена одного деления барабана 0,01 мм.).
Для определения расстояния между мнимыми источниками света d, как уже говорилось ранее, и расстояния от мнимых источников света до фокальной плоскости микроскопа a, используется специальная линза, которую устанавливают между бипризмой и микроскопом, и положение которой регулируется, как это будет разобрано далее. Линза используется только для определения расстояния между мнимыми источниками и расстояния от источников до фокальной плоскости микроскопа. При измерении расстояния между интерференционными полосами линза не используется.
3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
Размещено на http://www.allbest.ru/
Включаем осветитель. В поле зрения микроскопа должны быть видны темные и светлые интерференционные полосы.
Наводим микроскоп так, чтобы визирный штрих совместился с серединой крайней из отчетливо видимых справа светлых полос и записываем отсчет по шкале и барабану микрометрического винта. Затем передвигаем микроскоп до середины другой крайней полосы, считаем число полос между ними (см. рис.4) и снова записываем отсчет. Разность между двумя отсчетами, деленная на число полос, дает ширину одной полосы. Эту операцию повторяем 4-5 раз и из полученных значений берем среднее. Следует иметь в виду, что микрометрический винт может иметь некоторый люфт и при вращении его по часовой стрелке и против нее отсчеты могут не совпадать. Поэтому подводить штрих к середине интерференционной полосы нужно всегда с одной стороны. Результаты измерений записываем в таблицу 1.
Для определения расстояния a между плоскостью расположения мнимых источников и фокальной плоскостью микроскопа устанавливаем линзу (на рис.3, линза обозначена пунктиром). Так как расстояние между щелью и микроскопом более чем в 4 раза превышает фокусное расстояние линзы, то существует два таких ее положения, при которых в окуляр будут отчетливо видны изображения двух мнимых источников света (выглядят как две яркие полоски). Расстояния между этими изображениями для обоих положений линзы измеряются так же, как и расстояние между интерференционными полосами. Одновременно с измерениями расстояний между изображениями мнимых источников необходимо измерить и записать положения линзы с помощью шкалы, расположенной на рельсе установки.
Для первого положения линзы, когда изображения мнимых источников увеличены,
, (10)
где - расстояние между изображениями мнимых источников, измеренное с помощью микроскопа; - расстояние от места положения мнимых источников до линзы; - расстояние между линзой и фокальной плоскостью микроскопа, (расстояния и не измеряются так как они не будут входить в рабочую формулу по определению длины волны).
Таблица 1
№ измерения |
Отсчет слева, мм |
Отсчет справа, мм |
Разность отсчетов, мм |
Число полос |
расстояние между соседними интерференционными полосами, мм |
|
bср |
Аналогично проводятся измерения для второго положения линзы, при котором изображения мнимых источников уменьшены,
. (11)
Из формул (10) и (11) следует, что расстояние между мнимыми источниками будет равно
. (12)
(этот параметр необходимо определить и привести в отчете работы).
Как было уже указано ранее, для определения расстояния (от мнимых источников до фокальной плоскости микроскопа), измеряем, по шкале имеющейся на рельсе установки, смещение линзы р при перемещении линзы из одного положения , при котором в микроскопе резко видны изображения щелей, в другое такое же положение . Тогда
, (13)
. (14)
электромагнитный световой волна бипризма
Исключив из равенств (10), (11), (13) и (14) и , получим
. (15)
Таким образом, для определения величины достаточно, кроме измерения расстояний и между изображениями мнимых источников в двух положениях линзы, необходимо также измерить смещение линзы при переходе из одного положения в другое, т.е. величину .
Заметим еще раз, что, найдя два положение линзы на рельсе, при котором в микроскопе четко видны изображения мнимых источников (две яркие четкие полоски), проводятся как измерения расстояния между этими изображениями, так и определяется положение линзы на рельсе установки. Результаты измерений записываются в табл.2
Таблица 2
Отсчет положения изображений мнимых источников |
Отсчет положения изображений мнимых источников |
||||||||
левого |
правого |
левого |
правого |
||||||
Среднее значение |
Среднее значение |
Длину волны вычисляем по соотношению вытекающему из формулы (8) и используя результаты определения величины b и величин d и a
. (16)
В отчете приводятся результаты измерения расстояния между мнимыми источниками d, расстояния от мнимых источников до фокальной плоскости микроскопа а, ширина интерференционной полосы b и величина измеренной длины волны .
Определяем установленным порядком погрешность измерений и с учетом ее приводим конечные результаты.
Размещено на Allbest.ru
Подобные документы
Проведение измерения длины световой волны с помощью бипризмы Френеля. Определение расстояний между мнимыми источниками света и расчет пути светового излучения от мнимых источников до фокальной плоскости микроскопа. Расчет ширины интерференционных полос.
лабораторная работа [273,5 K], добавлен 14.12.2013Изучение дифракции света на одномерной решетке и определение ее периода. Образование вторичных лучей по принципу Гюйгенса-Френеля. Расположение главных максимумов относительно центрального. Измерение среднеарифметического значения длины световой волны.
лабораторная работа [67,1 K], добавлен 25.11.2010Изучение явления интерференции света с помощью интерференционной картины, ее получение по заданным параметрам (на экране не менее восьми светлых полос). Сравнение длины световой волны с длиной волны падающего света. Работа программы "Интерференция волн".
лабораторная работа [86,5 K], добавлен 22.03.2015Объяснение явления интерференции. Развитие волновой теории света. Исследования Френеля по интерференции и дифракции света. Перераспределение световой энергии в пространстве. Интерференционный опыт Юнга с двумя щелями. Длина световой волны.
реферат [31,1 K], добавлен 09.10.2006Расчет длины волны из опыта Юнга и колец Ньютона. Интерференция света как результат наложения двух когерентных световых волн. Подробный расчет всех необходимых величин. Определение длины волны через угол наклона соответствующей прямой к оси абсцисс.
лабораторная работа [469,3 K], добавлен 11.06.2010Взаимодействие электромагнитных волн с веществом. Отражение и преломление света диэлектриками. Принцип Гюйгенса - Френеля. Рефракция света. Графическое сложение амплитуд вторичных волн. Дифракция плоской световой волны и сферической световой волны.
реферат [168,2 K], добавлен 25.11.2008Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.
методичка [211,1 K], добавлен 30.04.2014Теория метода получения колец Ньютона. История эксперимента. Описание состава экспериментальной установки. Нахождение длины волны красного, монохроматического света. Вывод расчетной формулы. Запись окончательного результата с учетом всех погрешностей.
контрольная работа [286,8 K], добавлен 05.11.2015Исследование корпускулярной и волновой теорий света. Изучение условий максимумов и минимумов интерференционной картины. Сложение двух монохроматических волн. Длина световой волны и цвет воспринимаемого глазом света. Локализация интерференционных полос.
реферат [928,6 K], добавлен 20.05.2015Световые волны и их характеристики. Связь амплитуды световой волны с ее интенсивностью. Средняя плотность энергии в изучении лазера. Взаимодействие света с атомом. Дипольное приближение. Релятивистские эффекты в атоме. Комплексная напряженность поля.
реферат [144,7 K], добавлен 18.12.2013