Геометрическая оптика

Опытные доказательства закона прямолинейного распространения света. Экспериментальное подтверждение закона отражения и закона преломления света. Полное внутреннее отражение света на границе вода-воздух. Количественное определение электрического поля.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 15.03.2016
Размер файла 488,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Кольский филиал Петрозаводского государственного университета"

Факультет информатики и прикладной математики

Контрольная работа по физике:

1 вариант

Выполнил: студент заочной формы обучения

гр. ИСиТ 14/3 Шульга А. С.

Проверил: старший преподаватель Шейко Е.М.

Апатиты 2015

Законы геометрической оптики

Оптика - раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

геометрическая или лучевая оптика, в основе которой лежит представление о световых лучах;

волновая оптика, изучающая явления, в которых проявляются волновые свойства света;

квантовая оптика, изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при л > 0.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения г равен углу падения б.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения б к синусу угла преломления в есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым Виллебрордом Снеллиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

n = n2 / n1

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления - это отношение скорости распространения волн в первой среде х1 к скорости их распространения во второй среде х2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света х в среде:

Рис 1. иллюстрирует законы отражения и преломления света.

Рисунок 1 Законы отражения и преломления: г = б;n1 sin б = n2 sin в

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n2 < n1 (например, из стекла в воздух) можно наблюдать явление полного отражения, то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол бпр, который называется предельным углом полного внутреннего отражения (см. рис. 2).

Для угла падения б = бпр sin в = 1; значение sin бпр = n2 / n1 < 1.

Если второй средой является воздух (n2 ? 1), то формулу удобно переписать в виде

sin бпр = 1 / n,

где n = n1 > 1 - абсолютный показатель преломления первой среды.

Для границы раздела стекло-воздух (n = 1,5) критический угол равен бпр = 42°, для границы вода-воздух (n = 1,33) бпр = 48,7°.

Рисунок 2 Полное внутреннее отражение света на границе вода-воздух; S - точечный источник света

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис. 3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.

Рисунок 3 Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность

Закон независимого распространения лучей: если через точку пространства проходит несколько лучей, то каждый луч ведет себя так, как если бы других лучей не было

Это справедливо для линейной оптики, где показатель преломления не зависит от амплитуды и интенсивности проходящего света. Опыты показывают, что световые пучки при пересечении, как правило, распространяются независимо друг от друга. Закон независимости световых лучей строго справедлив для вакуума. Для световых лучей в веществе закон независимости лучей выполняется точно при небольшой интенсивности света и нарушается при распространении в веществе света большой интенсивности, например, лазерного излучения.

Задача

высота Солнца над горизонтом составляет a = 380. Под каким углом b к горизонту следует расположить зеркало, чтобы осветить солнечными лучами дно вертикального колодца?

Решение: Из построения видно, что y + a + п/2 + y = p, причем b = y + a. Очевидно, b + п/2 + b - a = p, откуда b = п/4 + a/2.

Электрическое поле

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля - действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью, так называемого пробного заряда - небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

свет закон отражение электрический

Напряженность электрического поля - векторная физическая величина. Направление вектора в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это поле обозначают общим термином - электрическое поле.

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции.

В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю

Это поле называется кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q < 0, то вектор направлен к заряду.

Для наглядного изображения электрического поля используют силовые линии. Эти линии проводят так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовой линии (рис. 4). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

Рисунок 4 Силовые линии электрического поля

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рис. 5 Так как электростатическое поле, создаваемое любой системой зарядов, может быть представлено в виде суперпозиции кулоновских полей точечных зарядов, изображенные на рис. 5 поля можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

Рисунок 5 Силовые линии кулоновских полей

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор от заряда Q к точке наблюдения. Тогда при Q > 0 вектор параллелен , а при Q < 0 вектор антипараллелен . Следовательно, можно записать:

где r - модуль радиус-вектора .

В качестве примера применения принципа суперпозиции полей на рис. 6 изображена картина силовых линий поля электрического диполя - системы из двух одинаковых по модулю зарядов разного знака q и -q, расположенных на некотором расстоянии l.

Рисунок 6 Силовые линии поля электрического диполя

Важной характеристикой электрического диполя является так называемый дипольный момент , где - вектор, направленный от отрицательного заряда к положительному, модуль

Диполь может служить электрической моделью многих молекул.

Электрическим дипольным моментом обладает, например, нейтральная молекула воды (H2O), так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105 (рис. 7). Дипольный момент молекулы воды p = 6,2·10-30 Кл · м.

Рисунок 7 Дипольный момент молекулы воды

Во многих задачах электростатики требуется определить электрическое поле по заданному распределению зарядов. Пусть, например, нужно найти электрическое поле длинной однородно заряженной нити (рис. 8) на расстоянии R от нее.

Рисунок 8 Электрическое поле заряженной нити

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Дx нити, с зарядом фДx, где ф - заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей Результирующее поле оказывается равным

Вектор везде направлен по радиусу . Это следует из симметрии задачи. Уже этот простой пример показывает, что прямой путь определения поля по заданному распределению зарядов приводит к громоздким математическим выкладкам. В ряде случаев можно значительно упростить расчеты, если воспользоваться теоремой Гаусса, которая выражает фундаментальное свойство электрического поля.

Задача

Найти напряжённость электрического поля в точке, в которой на заряд 10 Кл действует сила 5 кН.

Решение: Переведём кН в Н: 5 кН = 5000 Н. Подставим значения в формулу:

Ответ: Напряжённость электрического поля равна Е=500 вольт на метр.

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение шкалы электромагнитных волн. Закон прямолинейного распространения света, независимости световых пучков, отражения и преломления света. Понятие и свойства линзы, определение оптической силы. Особенности построения изображения в линзах.

    презентация [1,2 M], добавлен 28.07.2015

  • Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.

    реферат [893,5 K], добавлен 20.03.2014

  • Свойства света, его физическая природа и взаимодействие с веществом. Получение изображений точечных источников света и протяженных предметов. Закон отражения, нахождение изображений при отражении света от различных типов зеркал. Закон преломление света.

    реферат [59,4 K], добавлен 26.04.2010

  • Основные законы геометрической оптики. Принцип прямолинейного распространения света. Обратимость световых лучей. Явление полного внутреннего отражения в оптических приборах. Фотометрические величины и их единицы. Спектральное распределение яркости.

    контрольная работа [17,6 K], добавлен 09.04.2013

  • История поиска ответа на вопрос о том, что такое свет. Оптика - учение о природе света, световых явлениях и взаимодействии с веществом. Открытия в области оптики. Закон отражения света. Понятие углов падения и отражения света, зеркальное отражение.

    презентация [714,6 K], добавлен 02.04.2012

  • Первые представления о природе света и теория зрительных лучей Евклида. Анализ законов геометрической оптики методом Гюйгенса и выведение законов отражения и преломления. Физический смысл показателя преломления и явление полного внутреннего отражения.

    презентация [493,3 K], добавлен 07.09.2010

  • Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.

    курсовая работа [2,1 M], добавлен 13.10.2012

  • Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.

    презентация [1,3 M], добавлен 02.10.2014

  • Что такое оптика? Ее виды и роль в развитии современной физики. Явления, связанные с отражением света. Зависимость коэффициента отражения от угла падения света. Защитные стёкла. Явления, связанные с преломлением света. Радуга, мираж, полярные сияния.

    реферат [3,1 M], добавлен 01.06.2010

  • Законы распространения световой энергии в прозрачных средах на основе представления о световом луче. Ход лучей в сечении треугольной призмы. Рассеивающая линза. Квантовые свойства света. Фотоэффект. Закон отражения. Угол падения равен углу отражения.

    реферат [144,9 K], добавлен 29.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.