Концепции физики элементарных частиц
Участие основных элементарных частиц во взаимодействиях. Сущность нормировки потенциальной энергии. Характеристика гравитационной и электромагнитной связи. Главная характеристика квантовой гравитации. Особенность управляемых термоядерных реакций.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 04.12.2015 |
Размер файла | 105,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Виды взаимодействий
2. Гравитационное взаимодействие
3. Понятие о квантовой гравитации
4. Слабое взаимодействие
5. Сильное взаимодействие
6. Электромагнитное взаимодействие
7. Тенденции объединения взаимодействий
8. Управляемые термоядерные реакции
9. Создание единой теории фундаментальных взаимодействий
Заключение
Список использованной литературы
Введение
Современные достижения физики высоких энергий все больше укрепляют представление, что многообразие свойств природы обусловлено взаимодействующими элементарными частицами. Дать неформальное определение элементарной частицы, по-видимому, невозможно, поскольку речь идет о самых первичных элементах материи. На качественном уровне можно говорить, что истинно элементарными частицами называются физические объекты, которые не имеют составных частей.
Очевидно, что вопрос об элементарности физических объектов - это в первую очередь вопрос экспериментальный. Например, экспериментально установлено, что молекулы, атомы, атомные ядра имеют внутреннюю структуру, указывающую на наличие составных частей. Поэтому их нельзя считать элементарными частицами. Сравнительно недавно открыто, что такие частицы, как мезоны и барионы, также обладают внутренней структурой и, следовательно, не являются элементарными. В то же время у электрона внутренняя структура никогда не наблюдалась, и, значит, его можно отнести к элементарным частицам. Другим примером элементарной частицы является квант света - фотон.
Современные экспериментальные данные свидетельствуют, что существует только четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Эти взаимодействия называются фундаментальными, то есть самыми основными, исходными, первичными. Если принять во внимание все многообразие свойств окружающего нас Мира, то кажется совершенно удивительным, что в Природе есть только четыре фундаментальных взаимодействия, ответственных за все явления Природы. Помимо качественных различий, фундаментальные взаимодействия отличаются в количественном отношении по силе воздействия, которая характеризуется термином интенсивность. По мере увеличения интенсивности фундаментальные взаимодействия располагаются в следующем порядке: гравитационное, слабое, электромагнитное и сильное. Каждое из этих взаимодействий характеризуется соответствующим параметром, называемым константой связи, численное значение которого определяет интенсивность взаимодействия.
Каким образом физические объекты осуществляют фундаментальные взаимодействия между собой? На качественном уровне ответ на этот вопрос выглядит следующим образом. Фундаментальные взаимодействия переносятся квантами. При этом в квантовой области фундаментальным взаимодействиям отвечают соответствующие элементарные частицы, называемые элементарными частицами - переносчиками взаимодействий. В процессе взаимодействия физический объект испускает частицы - переносчики взаимодействия, которые поглощаются другим физическим объектом. Это ведет к тому, что объекты как бы чувствуют друг друга, их энергия, характер движения, состояние изменяются, то есть они испытывают взаимное влияние.
В современной физике высоких энергий все большее значение приобретает идея объединения фундаментальных взаимодействий. Согласно идеям объединения, в Природе существует только одно единое фундаментальное взаимодействие, проявляющее себя в конкретных ситуациях как гравитационное, или как слабое, или как электромагнитное, или как сильное, или как их некоторая комбинация. Успешной реализацией идей объединения послужило создание ставшей уже стандартной объединенной теории электромагнитных и слабых взаимодействий. Идет работа по развитию единой теории электромагнитных, слабых и сильных взаимодействий, получившей название теории великого объединения. Предпринимаются попытки найти принцип объединения всех четырех фундаментальных взаимодействий. Мы последовательно рассмотрим основные проявления фундаментальных взаимодействий.
К началу XX века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитному и гравитационному.
В 1930-е годы физики обнаружили, что ядра атомов состоят из нуклонов (протонов и нейтронов). Стало понятно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и этого недостаточно, чтобы объяснить некоторые явления в микромире. В частности, было непонятно, что заставляет распадаться свободный нейтрон. Тогда было постулировано существование слабого взаимодействия, и этого оказалось достаточно для описания всех до сих пор наблюдавшихся явлений в микромире.
В физике механическая энергия делится на два вида -- потенциальную и кинетическую энергию. Причиной изменения движения тел (изменения кинетической энергии) является сила (потенциальная энергия) (см. второй закон Ньютона). Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д. Однако когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия -- электромагнитное, то, как оказалось, большинство этих сил -- лишь различные проявления электромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой является гравитационное взаимодействие между телами, обладающими массой.
Потенциальная энергия -- скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении[1]. Другое определение: потенциальная энергия -- это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[2]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.
Единицей измерения энергии в Международной системе единиц (СИ) является джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными (потенциальными).
Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.
Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.
Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.
Кинетимческая энемргия -- энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательного движения.
Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия -- часть полной энергии, обусловленная движением.
Простым языком, кинетическая энергия - это энергия, которую тело имеет только при движении. Когда тело не движется, кинетическая энергия равна нулю.
1. Виды взаимодействий
Несмотря на то, что в веществе содержится большое количество элементарных частиц, существует лишь четыре вида фундаментальных взаимодействий между ними: гравитационное, слабое, электромагнитное и сильное.
Самым всеобъемлющим является гравитационное взаимодействие. Ему подвержены все материальные взаимодействия без исключения - и микрочастицы, и макротела. Это значит, что в нем участвуют все элементарные частицы. Проявляется оно в виде всемирного тяготения.
Гравитация (от лат. Gravitas - тяжесть) управляет наиболее глобальными процессами во Вселенной, в частности, обеспечивает строение и стабильность нашей Солнечной системы. Согласно современным представлениям, каждое из взаимодействий возникает в результате обмена частицами, называемыми переносчиками этого взаимодействия. Гравитационное взаимодействие осуществляется посредством обмена гравитонами.
Электромагнитное взаимодействие, как и гравитационное, по своей природе дальнодействующее: соответствующие силы могут проявляться на очень значительных расстояниях. Электромагнитное взаимодействие описывается зарядами одного типа (электрическими), но эти заряды уже могут иметь два знака - положительный и отрицательный. В отличие от тяготения, электромагнитные силы способны быть как силами притяжения, так и силами отталкивания. Физические и химические свойства разнообразных веществ, материалов и самой живой ткани обусловлены именно этим взаимодействием. Оно же приводит в действие всю электрическую и электронную аппаратуру, т.е. связывает между собой только заряженные частицы. Теория электромагнитного взаимодействия в макромире называется классической электродинамикой.
Слабое взаимодействиеменее известно за пределами узкого круга физиков и астрономов, но это нисколько не умаляет его значения. Достаточно сказать, что если бы его не было, погасли бы Солнце и другие звезды, ибо в реакциях, обеспечивающих их свечение, слабое взаимодействие играет очень важную роль. Слабое взаимодействие относится к короткодействующим: его радиус примерно в 1000 раз меньше, чем у ядерных сил.
Сильное взаимодействие - самое мощное из всех остальных. Оно определяет связи только между адронами. Ядерные силы, действующие между нуклонами в атомном ядре, - проявление этого вида взаимодействия. Оно примерно в 100 раз сильнее электромагнитного. В отличие от последнего (а также гравитационного) оно, во-первых, короткодействующее на расстоянии, большем 10-15м (порядка размера ядра), соответствующие силы между протонами и нейтронами, резко уменьшаясь, перестают их связывать друг с другом. Во-вторых, его удается удовлетворительно описать только посредством трех зарядов (цветов), образующих сложные комбинации.
В таблице 1 условно представлены важнейшие элементарные частицы, принадлежащие к основным группам (адроны, лептоны, переносчики взаимодействия).
Таблица 1 Участие основных элементарных частиц во взаимодействиях
Важнейшей характеристикой фундаментального взаимодействия является его радиус действия. Радиус действия - это максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь (Табл.2). При малом радиусе взаимодействие называют короткодействующим, при большом - дальнодействующим.
Вид |
Радиус действия, м |
Переносчик взаимодействия |
Место взаимодействия |
Относительная интенсивность |
|
Гравитационное |
Бесконечно большой |
Гравитоны |
Между телами, имеющими массу |
1 |
|
Электромагнитное |
Бесконечно большой |
Фотоны |
Между телами, имеющими заряд |
1036 |
|
Ядерное (сильное) |
1 фм (фемтометр) |
Глюоны |
Между нуклонами, эл. частицами |
1038 |
|
Слабое |
1 ам (атто-метр) |
Промежуточные векторные бозоны |
Между кварками |
1032 |
2. Гравитационное взаимодействие
Это взаимодействие носит универсальный характер, в нем участвуют все виды материи, все объекты природы, все элементарные частицы! Общепринятой классической (не квантовой) теорией гравитационного взаимодействия является эйнштейновская общая теория относительности. Гравитация определяет движение планет в звездных системах, играет важную роль в процессах, протекающих в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя, как сила взаимного притяжения.
Согласно общей теории относительности, гравитация связана с кривизной пространства-времени и описывается в терминах так называемой римановой геометрии. В настоящее время все экспериментальные и наблюдательные данные о гравитации укладываются в рамки общей теории относительности. Однако данные о сильных гравитационных полях по существу отсутствуют, поэтому экспериментальные аспекты этой теории содержат много вопросов. Такая ситуация порождает появление различных альтернативных теорий гравитации, предсказания которых практически неотличимы от предсказаний общей теории относительности для физических эффектов в Солнечной системе, но ведут к другим следствиям в сильных гравитационных полях.
Если пренебречь всеми релятивистскими эффектами и ограничиться слабыми стационарными гравитационными полями, то общая теория относительности сводится к ньютоновской теории всемирного тяготения. В этом случае, как известно, потенциальная энергия взаимодействия двух точечных частиц с массами m1 и m2 дается соотношением
где r - расстояние между частицами, G - ньютоновская гравитационная постоянная, играющая роль константы гравитационного взаимодействия. Данное соотношение показывает, что потенциальная энергия взаимодействия V(r) отлична от нуля при любом конечном r и спадает к нулю очень медленно. По этой причине говорят, что гравитационное взаимодействие является дальнодействующим.
Из многих физических предсказаний общей теории относительности отметим три. Теоретически установлено, что гравитационные возмущения могут распространяться в пространстве в виде волн, называемых гравитационными. Распространяющиеся слабые гравитационные возмущения во многом аналогичны электромагнитным волнам. Их скорость равна скорости света, они имеют два состояния поляризации, для них характерны явления интерференции и дифракции. Однако в силу чрезвычайно слабого взаимодействия гравитационных волн с веществом их прямое экспериментальное наблюдение до сих пор не было возможно. Тем не менее данные некоторых астрономических наблюдений по потере энергии в системах двойных звезд свидетельствуют о возможном существовании гравитационных волн в природе.
Теоретическое исследование условий равновесия звезд в рамках общей теории относительности показывает, что при определенных условиях достаточно массивные звезды могут начать катастрофически сжиматься. Это оказывается возможным на достаточно поздних стадиях эволюции звезды, когда внутреннее давление, обусловленное процессами, ответственными за светимость звезды, не в состоянии уравновесить давление сил тяготения, стремящихся сжать звезду. В результате процесс сжатия уже ничем не может быть остановлен. Описанное физическое явление, предсказанное теоретически в рамках общей теории относительности, получило название гравитационного коллапса. Исследования показали, что если радиус звезды становится меньше так называемого гравитационного радиуса
Rg = 2GM / c2,
где M - масса звезды, а c - скорость света, то для внешнего наблюдателя звезда гаснет. Никакая информация о процессах, идущих в этой звезде, не может достичь внешнего наблюдателя. При этом тела, падающие на звезду, свободно пересекают гравитационный радиус. Если в качестве такого тела подразумевается наблюдатель, то ничего, кроме усиления гравитации, он не заметит. Таким образом, возникает область пространства, в которую можно попасть, но из которой ничего не может выйти, включая световой луч. Подобная область пространства называется черной дырой. Существование черных дыр является одним из теоретических предсказаний общей теории относительности, некоторые альтернативные теории гравитации построены именно так, что они запрещают такого типа явления. В связи с этим вопрос о реальности черных дыр имеет исключительно важное значение. В настоящее время имеются наблюдательные данные, свидетельствующие о наличии черных дыр во Вселенной.
В рамках общей теории относительности впервые удалось сформулировать проблему эволюции Вселенной. Тем самым Вселенная в целом становится не предметом спекулятивных рассуждений, а объектом физической науки. Раздел физики, предметом которого является Вселенная в целом, называется космологией. В настоящее время считается твердо установленным, что мы живем в расширяющейся Вселенной.
Современная картина эволюции Вселенной основывается на представлении о том, что Вселенная, включая такие ее атрибуты, как пространство и время, возникла в результате особого физического явления, называемого Большой Взрыв, и с тех пор расширяется. Согласно теории эволюции Вселенной, расстояния между далекими галактиками должны увеличиваться со временем, и вся Вселенная должна быть заполнена тепловым излучением с температурой порядка 3 K. Эти предсказания теории находятся в прекрасном соответствии с данными астрономических наблюдений. При этом оценки показывают, что возраст Вселенной, то есть время, прошедшее с момента Большого Взрыва, составляет порядка 10 млрд лет. Что касается деталей Большого Взрыва, то это явление слабо изучено и можно говорить о загадке Большого Взрыва как о вызове физической науке в целом. Не исключено, что объяснение механизма Большого Взрыва связано с новыми, пока еще неизвестными законами Природы. Общепринятый современный взгляд на возможное решение проблемы Большого Взрыва основывается на идее объединения теории гравитации и квантовой механики.
3. Понятие о квантовой гравитации
Можно ли вообще говорить о квантовых проявлениях гравитационного взаимодействия? Как принято считать, принципы квантовой механики носят универсальный характер и применимы к любому физическому объекту. В этом смысле гравитационное поле не представляет исключения. Теоретические исследования показывают, что на квантовом уровне гравитационное взаимодействие переносится элементарной частицей, называемой гравитон. Можно отметить, что гравитон является безмассовым бозоном со спином.. Гравитационное взаимодействие между частицами, обусловленное обменом гравитоном, условно изображается следующим образом:
Частица испускает гравитон, в силу чего состояние ее движения изменяется. Другая частица поглощает гравитон и также изменяет состояние своего движения. В результате возникает воздействие частиц друг на друга.
Как уже отмечалось, константой связи, характеризующей гравитационное взаимодействие, является ньютоновская константа G. Хорошо известно, что G - размерная величина. Очевидно, что для оценки интенсивности взаимодействия удобно иметь безразмерную константу связи. Чтобы получить такую константу, можно использовать фундаментальные постоянные: (постоянная Планка) и c (скорость света) - и ввести какую-нибудь эталонную массу, например массу протона mp. Тогда безразмерная константа связи гравитационного взаимодействия будет
что, конечно, является очень малой величиной.
Интересно отметить, что из фундаментальных постоянных G, , c можно построить величины, имеющие размерность длины, времени, плотности, массы, энергии. Эти величины называются планковскими. В частности, планковская длина lPl и планковское время tPl выглядят следующим образом:
Каждая фундаментальная физическая константа характеризует определенный круг физических явлений: G - гравитационные явления, - квантовые, c - релятивистские. Поэтому если в какое-то соотношение входят одновременно G, , c, то это значит, что данное соотношение описывает явление, которое одновременно является гравитационным, квантовым и релятивистским. Таким образом, существование планковских величин указывает на возможное существование соответствующих явлений в Природе.
Конечно, численные значения lPl и tPl очень малы по сравнению с характерными значениями величин в макромире. Но это означает только то, что квантовогравитационные эффекты слабо проявляют себя. Они могли быть существенны лишь тогда, когда характерные параметры стали бы сравнимыми с планковскими величинами.
Отличительной чертой явлений микромира является то обстоятельство, что физические величины оказываются подверженными так называемым квантовым флуктуациям. Это означает, что при многократных измерениях физической величины в определенном состоянии принципиально должны получаться различные численные значения, обусловленные неконтролируемым взаимодействием прибора с наблюдаемым объектом. Вспомним, что гравитация связана с проявлением кривизны пространства-времени, то есть с геометрией пространства-времени. Поэтому следует ожидать, что на временах порядка tPl и расстояниях порядка lPl геометрия пространства-времени должна стать квантовым объектом, геометрические характеристики должны испытывать квантовые флуктуации. Другими словами, на планковских масштабах нет никакой фиксированной пространственно-временной геометрии, образно говоря, пространство-время представляет собой бурлящую пену.
Последовательная квантовая теория гравитации не построена. В силу чрезвычайно малых значений lPl , tPl следует ожидать, что в любом обозримом будущем не удастся поставить эксперименты, в которых проявили бы себя квантовогравитационные эффекты. Поэтому теоретическое исследование вопросов квантовой гравитации остается единственной возможностью продвижения вперед. Есть ли, однако, явления, где квантовая гравитация могла бы оказаться существенной? Да, есть, и мы о них уже говорили. Это гравитационный коллапс и Большой Взрыв. Согласно классической теории гравитации, объект, подверженный гравитационному коллапсу, должен сжиматься до сколь угодно малых размеров. Это означает, что его размеры могут стать сравнимыми с lPl , где классическая теория уже неприменима. Точно так же в процессе Большого Взрыва возраст Вселенной был сравним с tPl и она имела размеры порядка lPl. Это означает, что понимание физики Большого Взрыва невозможно в рамках классической теории. Таким образом, описание конечной стадии гравитационного коллапса и начальной стадии эволюции Вселенной может быть осуществлено только с привлечением квантовой теории гравитации.
4. Слабое взаимодействие
Это взаимодействие является наиболее слабым из фундаментальных взаимодействий, экспериментально наблюдаемых в распадах элементарных частиц, где принципиально существенными являются квантовые эффекты. Вспомним, что квантовые проявления гравитационного взаимодействия никогда не наблюдались. Слабое взаимодействие выделяется с помощью следующего правила: если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.
Типичный пример слабого взаимодействия - это бета-распад нейтрона
n p + e- + e,
где n - нейтрон, p - протон, e- - электрон, e - электронное антинейтрино.
Следует, однако, иметь в виду, что указанное выше правило совсем не означает, что любой акт слабого взаимодействия обязан сопровождаться нейтрино или антинейтрино. Известно, что имеет место большое число безнейтринных распадов. В качестве примера можно отметить процесс распада лямбда-гиперона на протон p и отрицательно заряженный пион . По современным представлениям нейтрон и протон не являются истинно элементарными частицами, а состоят из элементарных частиц, называемых кварками.
Интенсивность слабого взаимодействия характеризуется константой связи Ферми GF. Константа GF размерна. Чтобы образовать безразмерную величину, необходимо использовать какую-нибудь эталонную массу, например массу протона mp. Тогда безразмерная константа связи будет
GFmp2 ~ 10-5.
Видно, что слабое взаимодействие гораздо интенсивнее гравитационного.
Слабое взаимодействие в отличие от гравитационного является короткодействующим. Это означает, что слабое взаимодействие между частицами начинает действовать, только если частицы находятся достаточно близко друг к другу. Если же расстояние между частицами превосходит некоторую величину, называемую характерным радиусом взаимодействия, слабое взаимодействие не проявляет себя. Экспериментально установлено, что характерный радиус слабого взаимодействия порядка 10-15 см, то есть слабое взаимодействие, сосредоточен на расстояниях меньше размеров атомного ядра.
Почему можно говорить о слабом взаимодействии как о независимом виде фундаментальных взаимодействий? Ответ прост. Установлено, что есть процессы превращений элементарных частиц, которые не сводятся к гравитационным, электромагнитным и сильным взаимодействиям. Хороший пример, показывающий, что существуют три качественно различных взаимодействия в ядерных явлениях, связан с радиоактивностью. Эксперименты указывают на наличие трех различных видов радиоактивности: -, - и -радиоактивных распадов. При этом -распад обусловлен сильным взаимодействием, -распад - электромагнитным. Оставшийся -распад не может быть объяснен электромагнитным и сильным взаимодействиями, и мы вынуждены принять, что есть еще одно фундаментальное взаимодействие, названное слабым. В общем случае необходимость введения слабого взаимодействия обусловлена тем, что в природе происходят процессы, в которых электромагнитные и сильные распады запрещены законами сохранения.
Хотя слабое взаимодействие существенно сосредоточено внутри ядра, оно имеет определенные макроскопические проявления. Как мы уже отмечали, оно связано с процессом -радиоактивности. Кроме того, слабое взаимодействие играет важную роль в так называемых термоядерных реакциях, ответственных за механизм энерговыделения в звездах.
Удивительнейшим свойством слабого взаимодействия является существование процессов, в которых проявляется зеркальная асимметрия. На первый взгляд кажется очевидным, что разница между понятиями левое и правое условна. Действительно, процессы гравитационного, электромагнитного и сильного взаимодействия инвариантны относительно пространственной инверсии, осуществляющей зеркальное отражение. Говорят, что в таких процессах сохраняется пространственная четность P. Однако экспериментально установлено, что слабые процессы могут протекать с несохранением пространственной четности и, следовательно, как бы чувствуют разницу между левым и правым. В настоящее время имеются твердые экспериментальные доказательства, что несохранение четности в слабых взаимодействиях носит универсальный характер, оно проявляет себя не только в распадах элементарных частиц, но и в ядерных и даже атомных явлениях. Следует признать, что зеркальная асимметрия представляет собой свойство Природы на самом фундаментальном уровне.
Несохранение четности в слабых взаимодействиях выглядело настолько необычным свойством, что практически сразу после его открытия теоретики предприняли попытки показать, что на самом деле существует полная симметрия между левым и правым, только она имеет более глубокий смысл, чем это ранее считалось. Зеркальное отражение должно сопровождаться заменой частиц на античастицы (зарядовое сопряжение C ), и тогда все фундаментальные взаимодействия должны быть инвариантными. Однако позднее было установлено, что эта инвариантность не является универсальной. Существуют слабые распады так называемых долгоживущих нейтральных каонов на пионы , , запрещенные, если бы указанная инвариантность реально имела место. Таким образом, отличительным свойством слабого взаимодействия является его CP-неинвариантность. Возможно, что это свойство ответственно за то обстоятельство, что вещество во Вселенной значительно превалирует над антивеществом, построенным из античастиц. Мир и антимир несимметричны. Вопрос о том, какие частицы являются переносчиками слабого взаимодействия, долгое время был неясен. Понимания удалось достичь сравнительно недавно в рамках объединенной теории электрослабых взаимодействий - теории Вайнберга-Салама-Глэшоу. В настоящее время общепринято, что переносчиками слабого взаимодействия являются так называемые - и Z0-бозоны. Это заряженные и нейтральная Z0 элементарные частицы со спином 1 и массами, равными по порядку величины 100 mp.
5. Сильное взаимодействие
Сильное взаимодействие ответственно за устойчивость атомных ядер. Поскольку атомные ядра большинства химических элементов стабильны, то ясно, что взаимодействие, которое удерживает их от распада, должно быть достаточно сильным. Хорошо известно, что ядра состоят из протонов и нейтронов. Чтобы положительно заряженные протоны не разлетелись в разные стороны, необходимо наличие сил притяжения между ними, превосходящих силы электростатического отталкивания. Именно сильное взаимодействие является ответственным за эти силы притяжения.
Характерной чертой сильного взаимодействия является его зарядовая независимость. Ядерные силы притяжения между протонами, между нейтронами и между протоном и нейтроном по существу одинаковы. Отсюда следует, что с точки зрения сильных взаимодействий протон и нейтрон неотличимы и для них используется единый термин нуклон, то есть частица ядра. частица гравитационный электромагнитный термоядерный
Характерный масштаб сильного взаимодействия можно проиллюстрировать рассмотрев два покоящихся нуклона. Теория приводит к потенциальной энергии их взаимодействия в виде потенциала Юкавы
где величина r010-13 см и совпадает по порядку величины
характерным размером ядра, g - константа связи сильного взаимодействия.
Это соотношение показывает, что сильное взаимодействие является короткодействующим и по существу полностью сосредоточено на расстояниях, не превышающих характерного размера ядра. При r > r0 оно практически исчезает. Известным макроскопическим проявлением сильного взаимодействия служит эффект б-радиоактивности. Следует, однако, иметь в виду, что потенциал Юкавы не является универсальным свойством сильного взаимодействия и не связан с его фундаментальными аспектами.
В настоящее время существует квантовая теория сильного взаимодействия, получившая название квантовой хромодинамики. Согласно этой теории, переносчиками сильного взаимодействия являются элементарные частицы - глюоны. По современным представлениям частицы, участвующие в сильном взаимодействии и называемые адронами, состоят из элементарных частиц - кварков.
Кварки представляют собой фермионы со спином 1/2 и ненулевой массой. Наиболее удивительным свойством кварков является их дробный электрический заряд. Кварки формируются в три пары (три поколения дублетов), обозначаемые следующим образом:
Каждый тип кварка принято называть ароматом, так что существуют шесть кварковых ароматов. При этом u-, c-, t-кварки имеют электрический заряд 2/3|e| , а d-, s-, b-кварки - электрический заряд -1/3|e|, где e - заряд электрона. Кроме того, существуют три кварка данного аромата. Они отличаются квантовым числом, называемым цветом и принимающим три значения: желтый, синий, красный. Каждому кварку соответствует антикварк, имеющий по отношению к данному кварку противоположный электрический заряд и так называемый антицвет: антижелтый, антисиний, антикрасный. Принимая во внимание число ароматов и цветов, мы видим, что всего существуют 36 кварков и антикварков.
Кварк, входящий в состав адрона, испускает глюон, в силу чего состояние движения адрона изменяется. Этот глюон поглощается кварком, входящим в состав другого адрона, и меняет состояние его движения. В результате возникает взаимовоздействие адронов друг на друга.
Природа устроена так, что взаимодействие кварков всегда ведет к образованию бесцветных связанных состояний, которые как раз и являются адронами. Например, протон и нейтрон составлены из трех кварков: p = uud, n = udd. Пион составлен из кварка u и антикварка : = u. Отличительная черта кварк-кваркового взаимодействия через глюоны состоит в том, что с уменьшением расстояния между кварками их взаимодействие ослабляется. Это явление получило название асимптотической свободы и ведет к тому, что внутри адронов кварки можно рассматривать как свободные частицы. Асимптотическая свобода естественным образом вытекает из квантовой хромодинамики. Имеются экспериментальные и теоретические указания на то, что с ростом расстояния взаимодействие между кварками должно возрастать, в силу чего кваркам энергетически выгодно находиться внутри адрона. Это означает, что мы можем наблюдать только бесцветные объекты - адроны. Одиночные кварки и глюоны, обладающие цветом, не могут существовать в свободном состоянии. Явление удержания элементарных частиц, обладающих цветом, внутри адронов получило название конфайнмента. Для объяснения конфайнмента предлагались различные модели, однако последовательное описание, вытекающее из первых принципов теории, до сих пор не построено. С качественной точки зрения трудности связаны с тем, что, обладая цветом, глюоны взаимодействуют со всеми цветными объектами, в том числе и друг с другом. По этой причине квантовая хромодинамика является существенно нелинейной теорией и приближенные методы исследования, принятые в квантовой электродинамике и электрослабой теории, оказываются не вполне адекватными в теории сильных взаимодействий.
6. Электромагнитное взаимодействие
В электромагнитном взаимодействии участвуют все заряженные тела, все заряженные элементарные частицы. В этом смысле оно достаточно универсально. Классической теорией электромагнитного взаимодействия является максвелловская электродинамика. В качестве константы связи принимается заряд электрона e.
Если рассмотреть два покоящихся точечных заряда q1 и q2, то их электромагнитное взаимодействие сведется к известной электростатической силе. Это означает, что взаимодействие является дальнодействующим и медленно спадает с ростом расстояния между зарядами.
Классические проявления электромагнитного взаимодействия хорошо известны, и мы не будем на них останавливаться. С точки зрения квантовой теории переносчиком электромагнитного взаимодействия является элементарная частица фотон - безмассовый бозон со спином 1. Квантовое электромагнитное взаимодействие между зарядами условно изображается следующим образом:
Заряженная частица испускает фотон, в силу чего состояние ее движения изменяется. Другая частица поглощает этот фотон и также изменяет состояние своего движения. В результате частицы как бы чувствуют наличие друг друга. Хорошо известно, что электрический заряд является размерной величиной. Удобно ввести безразмерную константу связи электромагнитного взаимодействия. Для этого надо использовать фундаментальные постоянные и c. В результате приходим к следующей безразмерной константе связи, называемой в атомной физике постоянной тонкой структуры :
б= e2/c 1/137.
Легко заметить, что данная константа значительно превышает константы гравитационного и слабого взаимодействий.
С современной точки зрения электромагнитное и слабое взаимодействия представляют собой различные стороны единого электрослабого взаимодействия. Создана объединенная теория электрослабого взаимодействия - теория Вайнберга-Салама-Глэшоу, объясняющая с единых позиций все аспекты электромагнитных и слабых взаимодействий. Можно ли понять на качественном уровне, как происходит разделение объединенного взаимодействия на отдельные, как бы независимые взаимодействия?
Пока характерные энергии достаточно малы, электромагнитное и слабое взаимодействия отделены и не влияют друг на друга. С ростом энергии начинается их взаимовлияние, и при достаточно больших энергиях эти взаимодействия сливаются в единое электрослабое взаимодействие. Характерная энергия объединения оценивается по порядку величины как
102 ГэВ (ГэВ - это сокращенное от гигаэлектрон-вольт,
1 ГэВ = 109 эВ, 1 эВ = 1.610-12 эрг = 1.61019 Дж). Для сравнения отметим, что характерная энергия электрона в основном состоянии атома водорода порядка 10-8 ГэВ, характерная энергия связи атомного ядра порядка 10-2 ГэВ, характерная энергия связи твердого тела порядка 10-10 ГэВ. Таким образом, характерная энергия объединения электромагнитных и слабых взаимодействий огромна по сравнению с характерными энергиями в атомной и ядерной физике. По этой причине электромагнитное и слабое взаимодействия не проявляют в обычных физических явлениях своей единой сущности.
7. Тенденции объединения взаимодействий
Мы видим, что на квантовом уровне все фундаментальные взаимодействия проявляют себя одинаковым образом. Элементарная частица вещества испускает элементарную частицу - переносчик взаимодействия, которая поглощается другой элементарной частицей вещества. Это ведет к взаимовлиянию частиц вещества друг на друга.
Безразмерная константа связи сильного взаимодействия может быть построена по аналогии с постоянной тонкой структуры в виде g2/(c)10. Если сравнить безразмерные константы связи, то легко заметить, что самым слабым является гравитационное взаимодействие, а затем располагаются слабое, электромагнитное и сильное.
Если принять во внимание уже развитую объединенную теорию электрослабых взаимодействий, называемую сейчас стандартной, и следовать тенденции объединения, то возникает проблема построения единой теории электрослабого и сильного взаимодействий. В настоящее время созданы модели такой единой теории, получившие название модели великого объединения. Все эти модели имеют много общих моментов, в частности характерная энергия объединения оказывается порядка 1015 ГэВ, что значительно превосходит характерную энергию объединения электромагнитных и слабых взаимодействий. Отсюда вытекает, что прямое экспериментальное исследование великого объединения выглядит проблематичным даже в достаточно отдаленном будущем. Для сравнения отметим, что наибольшая энергия, достижимая на современных ускорителях, не превышает 103 ГэВ. Поэтому если и будут получены какие-либо экспериментальные данные относительно великого объединения, то они могут носить только косвенный характер. В частности, модели великого объединения предсказывают распад протона и существование магнитного монополя большой массы. Экспериментальное подтверждение этих предсказаний было бы грандиозным триумфом тенденций объединения.
Общая картина разделения единого великого взаимодействия на отдельные сильное, слабое и электромагнитное взаимодействия выглядит следующим образом. При энергиях порядка 1015 ГэВ и выше существует единое взаимодействие. Когда энергия становится ниже 1015 ГэВ, сильное и электрослабое взаимодействия отделяются друг от друга и представляются как различные фундаментальные взаимодействия. При дальнейшем уменьшении энергии ниже 102 ГэВ происходит отделение слабого и электромагнитного взаимодействий. В результате на масштабе энергий, характерных для физики макроскопических явлений, три рассматриваемых взаимодействия выглядят как не имеющие единой природы.
Заметим теперь, что энергия 1015 ГэВ отстоит не так далеко от планковской энергии
при которой становятся существенными квантовогравитационные эффекты. Поэтому теория великого объединения с необходимостью ведет к проблеме квантовой гравитации. Если далее следовать тенденции объединения, мы должны принять идею о существовании одного всеобъемлющего фундаментального взаимодействия, которое разделяется на отдельные гравитационное, сильное, слабое и электромагнитное последовательно по мере понижения энергии от планковского значения до энергий, меньших 102 ГэВ.
Построение такой грандиозной объединяющей теории, по-видимому, неосуществимо в рамках системы идей, приведших к стандартной теории электрослабых взаимодействий и моделям великого объединения. Требуется привлечение новых, возможно кажущихся сумасшедшими, представлений, идей, методов. Несмотря на очень интересные подходы, развитые в последнее время, такие, как супергравитация и теория струн, проблема объединения всех фундаментальных взаимодействий остается открытой.
8. Управляемые термоядерные реакции
Считается, что запасов химически топлива человечеству хватит на несколько десятков лет. Ограниченны и разведанные запасы ядерного горючего. Спасти человечество от энергетического голода и стать практически неисчерпаемым источником энергии могут управляемые термоядерные реакции в плазме.
В 1 л обычной воды содержится 0,15 мл воды тяжёлой (D2O). При слиянии ядер дейтерия из 0,15 мл D2O выделяется столько же энергии, сколько её образуется при сгорании 300 л бензина. Тритий в природе практически не существует, однако его можно получить, бомбардируя нейтронами n изотоп лития: n+7 Li ® 4He + T
Ядро атома водорода не что иное как протон p. В ядре дейтерия содержится, кроме того, ещё один нейтрон, а в ядре трития - два нейтрона. Дейтерий и тритий могут реагировать друг с другом десятью разными способами. Но вероятности такой реакций различаются порой в сотни триллионов раз, а количество выделяющейся энергии - в 10-15 раз. Практический интерес представляют только три из них:
D + D ® T + p + 4МэВ ;
D + D ® 3He + n + 3,3МэВ;
D + T ® 4He + n + 17,6МэВ.
Если все ядра в каком-то объёме одновременно вступают в реакцию, энергия выделяется мгновенно. Происходит термоядерный взрыв. В реакторе же реакция синтеза должна протекать медленно.
Осуществить управляемый термоядерный синтез до сих пор не удалось, а преимущества он сулит немалые. Энергия, которая выделяется при термоядерных реакциях на единицу массы топлива, в миллионы раз превышает энергию химического топлива и, значит, в сотни раз дешевле. В термоядерной энергетике нет выброса продуктов сгорания в атмосферу и радиоактивных отходов. Наконец, на термоядерной электростанции исключен взрыв.
Во время синтеза основная часть энергии (более 75 %) выделяется в виде кинетической энергии нейтронов или протонов. Если замедлить нейтроны в подходящем веществе, оно нагревается; полученную теплоту легко превратить в электрическую энергию. Кинетическая энергия заряженных частиц - протонов - преобразуется в электричество непосредственно.
В реакции синтеза ядра должны соединяться, но они заряжены положительно и, следовательно, по закону Кулона, отталкиваются. Чтобы преодолеть силы отталкивания, даже ядрам дейтерия и трития, имеющим наименьший заряд (Z. = 1), необходима энергия около 10 или 100 кэВ. Ей соответствует температура порядка 108-109 К. При таких температурах любое вещество находится в состоянии высокотемпературной плазмы.
С позиций классической физики реакция синтеза невозможна, но здесь на помощь приходит чисто квантовый - туннельный эффект. Вычислено, что температура зажигания, начиная с которой выделение энергии превосходит её потери, для реакции дейтерий- тритий (DТ) равна приблизительно 4,5х107 К, а для реакций дейтерий-дейтерий (DD) - около 4х108 К. Естественно, предпочтительнее реакция DТ. Нагревают плазму электрическим током, лазерным излучением, электромагнитными волнами и другими способами. Но важна не только высокая температура.
Чем выше концентрация, тем чаще сталкиваются друг с другом частицы, поэтому может показаться, что для осуществления термоядерных реакций лучше использовать плазму высокой плотности. Однако, если бы в 1 см3 плазмы содержалось 1019 частиц (концентрация молекул в газе при нормальных условиях), давление в ней при температурах термоядерных реакций достигало бы порядка 106 атм. Такого давления не выдерживает ни одна конструкция, а потому плазма должна быть разрежённой (с концентрацией около 1015 частиц в 1 см3). Соударения частиц в этом случае происходят реже, и для поддержания реакции необходимо увеличивать время пребывания их в реакторе, или время удержания. Значит, для осуществления термоядерной реакции необходимо рассматривать произведение концентрации частиц плазмы на время их удержания. Для реакций DD -это произведение (так называемый критерий Лоусона) равно 1016 с/см3, а для реакции DТ - 1014с/см3. Следовательно, реакцию DТ реализовать легче, чем DD.
Когда начинались исследования плазмы, казалось, что осуществить управляемый синтез удастся быстро. Но со временем выяснилось, что в высокотемпературной плазме происходят сложные процессы и решающую роль играют многочисленные неустойчивости. Сегодня разрабатывается несколько типов устройств, в которых предполагается провести термоядерный синтез. Наиболее перспективными считаются токамаки (сокращение от «ТОроидальная КАмера с МАгнитными Катушками»). Токамак представляет собой гигантский трансформатор, первичная катушка которого намотана на сердечник, а вторичная имеет единственный виток - вакуумную камеру в форме тора (от лат. TORUS - «выпуклость»), с плазменным шнуром внутри. Система магнитов удерживает шнур в центре камеры, а ток силой в тысячи ампер нагревает его до требуемой температуры. Нейтроны, образующиеся в ходе термоядерной реакции, поглощаются в бланкете - слое вещества, окружающем камеру. Выделяющееся при этом тепло можно использовать для получения электроэнергии.
Несмотря на кажущуюся простоту токамака, ни одно устройство подобного типа не дало положительного выхода энергии. Большие надежды возлагаются на проектируемый в настоящее время гигантский токамак ITER. На этой установке, если она будет сооружена к 2005 г., предполагаемая мощность выхода 1,5 * 109 Вт. Среди других проектов следует отметить два: стеллараторы и устройства инерциального удержания плазмы.
Магнитное поле сложной формы, удерживающее плазму в круговой камере токамака, противодействует собственному полю плазменного шнура, которое стремится изогнуть траекторию заряженных частиц плазмы. В стеллараторе (от лат. STELLA - Звезда») плазме позволили принять форму, какую она «хочет», и оставили только поле, сжимающее шнур. Вакуумная камера приобрела весьма причудливый вид, а множество магнитных катушек - довольно сложную форму. Эксперименты на стеллараторах идут в разных странах, но добиться нужной температуры и времени удержания плазмы пока не удалось.
Принципиально иным является метод инерциального удержания плазмы, основанный на инерции реакционной смеси, которая при мгновенном нагреве (например, лазерным импульсом) разлетается не сразу. Ампулу, где находится смесь дейтерия с тритием, облучают со всех сторон лазерными импульсами длительностью до 10-10 с и суммарной мощностью порядка 1020 Вт/см. Оболочка ампулы испаряется, расширяющиеся газы и световое давление сжимают её содержимое почти в 50 тыс. раз. Давление в смеси возрастает до 1 млн. атм, а её плотность - до 50-100 г/см3. При таких условиях начинается термоядерная реакция.
Но и на этом пути имеется ряд технологических трудностей, пока не позволяющих превратить экспериментальные лазерные установки в промышленные реакторы.
9. Создание единой теории фундаментальных взаимодействий
Первой из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году. Затем в 1915 г. Эйнштейн сформулировал общую теорию относительности, описывающую гравитационное поле. Появилась идея построения единой теории фундаментальных взаимодействий (которых на тот момент было известно только два), подобно тому как Максвеллу удалось создать общее описание электрических и магнитных явлений. Такая единая теория объединила бы гравитацию и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.
В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории, однако ни одной полностью удовлетворительной модели выдвинуто не было. Это, в частности, связано с тем, что общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле условно нематериально (эмпирически недискретно), но как и прочие формы взаимодействия распространяется с предельно допустимой скоростью света (см. Скорость гравитации), в то время как электромагнитное поле являет все необходимые атрибуты материи.
Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в неё слабого и сильного взаимодействий, а также квантования теории.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позднее в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабые и сильное взаимодействия.
Экспериментальная проверка Стандартной Модели заключается в обнаружении предсказанных ею частиц и их свойств. В настоящий момент открыты все элементарные частицы Стандартной Модели.
Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и Стандартной Моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, а также М-теория.
Заключение
Многие основополагающие концепции современного естествознания прямо или косвенно связаны с описанием фундаментальных взаимодействий. Согласно современным представлениям, различают 4 взаимодействия: гравитационное, электромагнитное, сильное, слабое. Все встречающиеся в природе взаимодействия являются либо проявлением одного из указанных вида взаимодействия, либо их комбинацией, на которых базируется взаимосвязь всех материальных объектов микро-, макро- и мегамира. От радиуса действия сил зависит масштаб явлений, в которых те или иные силы играют основную роль. И ни одно из них не является излишним. Все они в равной мере необходимы для «нормального функционирования» Вселенной.
Если бы не взаимодействия, то частицы материи двигались бы независимо; «не подозревая» о существовании других частиц. Благодаря взаимодействиям частицы как бы обретают способность распознавать другие частицы и реагировать на них, в результате чего рождается коллективное поведение. Однако, если принять во внимание все многообразие свойств окружающего нас Мира, то кажется совершенно удивительным, что в Природе есть только четыре фундаментальных взаимодействия, ответственных за все явления Природы.
Подобные документы
Фундаментальные физические взаимодействия. Гравитация. Электромагнетизм. Слабое взаимодействие. Проблема единства физики. Классификация элементарных частиц. Характеристики субатомных частиц. Лептоны. Адроны. Частицы - переносчики взаимодействий.
дипломная работа [29,1 K], добавлен 05.02.2003Сущность элементарных частиц (лептонов и адронов), особенности их классификации. Общая характеристика гипотезы о существовании кварков: супермультиплеты, кварковая гипотеза. Специфика квантовой хромодинамики: понятие глюонов и асимптотической свободы.
курсовая работа [55,2 K], добавлен 20.12.2010Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.
реферат [24,3 K], добавлен 20.12.2011Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.
учебное пособие [7,9 M], добавлен 03.04.2010Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.
реферат [32,0 K], добавлен 12.12.2009Энергетическое разрешение полупроводникового детектора. Механизмы взаимодействия альфа-частиц с веществом. Моделирование прохождения элементарных частиц через вещество с использованием методов Монте–Карло. Потери энергии на фотоядерные взаимодействия.
курсовая работа [502,5 K], добавлен 07.12.2015Основные характеристики и классификация элементарных частиц. Виды взаимодействий между ними: сильное, электромагнитное, слабое и гравитационное. Состав атомных ядер и свойства. Кварки и лептоны. Способы, регистрация и исследования элементарных частиц.
курсовая работа [65,7 K], добавлен 08.12.2010Один из важнейших приборов для автоматического счёта элементарных частиц - счётчик Гейгера, основанный на принципе ударной ионизации. Конденсация перенасыщенного пара с образованием капелек воды в камере Вильсона. Метод толстослойных фотоэмульсий.
доклад [697,7 K], добавлен 28.05.2009Основные понятия, механизмы элементарных частиц, виды их физических взаимодействий (гравитационных, слабых, электромагнитных, ядерных). Частицы и античастицы. Классификация элементарных частиц: фотоны, лептоны, адроны (мезоны и барионы). Теория кварков.
курсовая работа [1,0 M], добавлен 21.03.2014Метод совпадений и антисовпадений как один из экспериментальных методов ядерной физики и физики элементарных частиц. Регистрация частиц и квантов с заданной между ними корреляцией в пространстве и во времени. Способы повышения временного разрешения.
контрольная работа [295,2 K], добавлен 15.01.2014