Средняя длина свободного пробега молекул

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул - это эффективный диаметр молекулы. Его зависимость от скорости. Явления переноса в газах и жидкостях. Рассмотрение явления теплопроводности. Применение закона Фурье.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 01.10.2015
Размер файла 177,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Средняя длина свободного пробега молекул

Эффективный диаметр

1. Молекулы газа находятся в состоянии хаотического движения непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы движутся равномерно прямолинейно, проходя при этом некоторый путь, который называется длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна …, но так как мы имеем дело с огромным количеством молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега:

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называетсяэффективным диаметром молекулы.

Он зависит от скорости сталкивающихся молекул, то есть от температуры (эффективный диаметр уменьшается с увеличением За секунду (t = 1 с) молекула проходит в среднем путь равный по величине средней скорости.

Если за 1 секунду она претерпевает в среднем столкновений, то

Для определения н считаем, что молекула имеет форму шара, и движется среди других неподвижных молекул. Эта молекула сталкивается только с теми молекулами, центры которых находятся на расстояниях d, то есть лежат внутри "ломаного" цилиндра радиусом d.

Среднее число столкновений за 1 секунду равно числу молекул в объёме "ломаного" цилиндра.

где n - концентрация молекул.

A

- средняя скорость молекулы, или путь, пройдённый ею за 1 секунду

- среднее число столкновений

С учетом движения других молекул:

то есть

1. Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. Выравнивание неоднородностей приводит к возникновению явления переноса.

Явления переноса в газах и жидкостях состоят в том, что в этих веществах возникает упорядоченный, направленный перенос массы (диффузия), импульса (внутренняя энергия) и внутренней энергии (теплопроводность). При этом в газах нарушается полная хаотичность движения молекул и распределение молекул по скоростям. Отклонениями от закона Максвелла объясняется направленный перенос физических характеристик вещества в явлениях переноса.

Будем рассматривать только одномерные явления, при которых физические величины, определяющие эти явления, зависят только от одной координаты

Теплопроводность.

Явление теплопроводности наблюдается, если в различных частях рассматриваемого газа температуры различны. Рассмотрение явления теплопроводности с микроскопической точки зрения показывает, что количество теплоты переносимое через площадку ДS, перпендикулярную направлению переноса прямо пропорционально коэффициенту тепло проводимости ч, зависящему от рода вещества или газа, градиенту температуры , величины площадки ДS и времени наблюдения Дt

Знак минус в законе Фурье показывает, что теплота переносится в направлении убывания температуры Т.

С молекулярно-кинетической точки зрения явления теплопроводности объясняется следующим образом. В той области объёма газа, где температура выше, кинетическая энергия хаотического теплового движения молекул больше, чем в той области, где температура ниже. В результате хаотического теплового движения молекулы переходят из области, где Т выше в область, где Т меньше. При этом они переносят с собой кинетическую энергию большую, той средней кинетической энергии, которой обладают молекулы в области с меньшей энергией. Вследствие постоянных столкновений молекул с течением времени происходит процесс выравнивания средних кинетических энергий, то есть выравнивание температур. молекула газ теплопроводность

Коэффициент теплопроводности ч равен

где удельная теплоёмкость газа при постоянном объёме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объёме).

плотность газа, средняя скорость теплового движения молекул

средняя длина свободного пробега.

Физический смысл ч: коэффициент теплопроводности ч численно равен плотности теплового потока

при градиенте температур равном 1

Диффузия

Явление диффузии заключается в самопроизвольном перемешивании молекул различных газов или жидкостей. Явление диффузии наблюдается в твердых телах. В тех случаях, когда в химически чистом однородном газе концентрация молекул будет различной, наблюдается перенос молекул, приводящей к выравниванию плотностей (или концентраций) молекул. Это явление самодиффузии. Будем для простоты считать, что плотность неоднородна вдоль оси х.

Рассмотрение явления самодиффузии с макроскопической точки зрения было сделано Фиком, который установил следующий закон: масса газа, переносимая через площадку ДS, перпендикулярную к направлению переноса за время Дt прямо пропорциональна коэффициенту самодиффузии D, зависящему от рода газа, градиенту плотности , величине площадки ДS и времени наблюдения Дt.

Знак минус показывает, что масса газа переносится в направлении убывания плотности. Коэффициент самодиффузии D численно равен массе газа переносимой за единицу времени через единичную площадку перпендикулярную направлению переноса, при градиенте плотности равном единице

- плотность потока

Согласно кинетической теории газов

Внутреннее трение (вязкость)

Явление внутреннего трения наблюдается в том случае, когда различные слои газа движутся с разными скоростями. В этом случае более быстрее слои тормозятся движущимися медленнее. На макроскопическое движение слоев газа (то есть движение слоя как целого) оказывает воздействие микроскопическое тепловое движение молекул.

Рассмотрим слой газа 1, движущийся со скоростью v1 и слой газа 2,движущийся со скоростью v2 v1 > v2. В результате теплового хаотического движения молекула A из слоя 1 перейдет в слой 2 и изменит свой импульс от значения mv до какого-то значения mv'(v2 < v'< v1).

Молекула В из слоя 2 в результате теплового хаотического движения перейдет в слой 1 и изменит свой импульс от значения mv2 до значения mv'' (v2 < v'' < v1), то есть молекулы ранее бывшие в слое 2, оказавшись в слое 1, при столкновении с его молекулами ускоряют свое упорядоченное движение, а упорядоченно движущиеся молекулы слоя 1 замедляются. Наоборот, при переходе молекул из более быстро движущегося слоя 1 в слой 2 они переносят большие импульсы и межмолекулярные соударения в слое 2 ускоряют движение молекул этого слоя.

Явление внутреннего трения описывается законом Ньютона: Сила внутреннего трения F, действующая между двумя слоями газа прямо пропорциональная коэффициенту внутреннего трения з, градиенту скорости и величине площади ДS.

(Импульс dp, переносимый через площадку dS за время Дt, прямо пропорционален коэффициенту внутреннего трения з, градиенту скорости , величине площадки dS и времени наблюдения dt).

- закон Ньютона.

Знак минус показывает, что сила внутреннего трения противоположна градиенту скорости, то есть импульс переноситься в направлении убывания скорости. Коэффициент внутреннего трения вычисляется по формуле

Связь между коэффициентами для явления переноса

Размещено на Allbest.ru


Подобные документы

  • Явления переноса в газах. Число столкновений и средняя длина свободного пробега молекул в газах. Диффузия газов и внутреннее трение. Вязкость и теплопроводность газов. Коэффициенты переноса и их зависимость от давления. Понятие о вакуумном состоянии.

    презентация [2,7 M], добавлен 13.02.2016

  • Основные свойства жидкости. Отсутствие идеальной модели и трудности формулировки общей теории жидкости. Явления переноса: диффузия, теплопроводность и вязкость, их характеристика. Отличия явлений переноса в жидкостях от аналогичных явлений в газах.

    реферат [40,2 K], добавлен 05.06.2009

  • Сущность молекулы как наименьшей частицы вещества, обладающей всеми его химическими свойствами, экспериментальное доказательство их существования. Строение молекул, взаимосвязь атомов и их прочность. Методы измерения размеров молекул, их диаметра.

    лабораторная работа [45,2 K], добавлен 11.02.2011

  • Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.

    презентация [336,7 K], добавлен 18.05.2011

  • Сущность и особенности явления диффузии как беспорядочного хаотического движения молекул. Исследование зависимости скорости диффузии от температуры в твердых веществах, сущность явления капиллярности. Проявление диффузии в природе и ее применение.

    презентация [688,1 K], добавлен 13.05.2011

  • Скорости газовых молекул. Понятие о распределении молекул газа по скоростям. Функция распределения Максвелла. Расчет среднеквадратичной скорости. Математическое определение вероятности. Распределение молекул идеального газа. Абсолютное значение скорости.

    презентация [1,1 M], добавлен 13.02.2016

  • Свойства жидкостей и их поверхностное натяжение. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества. Явления смачивания и несмачивания. Краевой угол. Капиллярный эффект. Капиллярные явления в природе и технике.

    контрольная работа [1,5 M], добавлен 06.04.2012

  • Содержание закона Фурье. Расчет коэффициентов теплопроводности для металлов, неметаллов, жидкостей. Причины зависимости теплопроводности от влажности материала и направления теплового потока. Определение коэффициента теплопередачи ограждающей конструкции.

    контрольная работа [161,2 K], добавлен 22.01.2012

  • Тушение возбужденных состояний примесных молекул в твердых растворах органических соединений. Особенности температурной зависимости параметров сенсибилизированной фосфоресценции примесных молекул в замороженных н-парафинах.

    диссертация [410,5 K], добавлен 13.03.2007

  • Определение структуры спектра атома, молекулы или образованной ими макросистемы их энергетическими уровнями. Спектры и структура атома водорода. Электронные состояния двухатомных молекул, электрические и оптические свойства. Молекулы с одинаковыми ядрами.

    курсовая работа [52,0 K], добавлен 06.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.