Электрическое поле в диэлектрике

Изучение молекул, у которых в отсутствии внешнего поля центры тяжести положительных и отрицательных зарядов не совпадают. Изучение процесса возникновения дипольного момента в диэлектрике. Различия типов поляризации в различных типах диэлектриков.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 01.10.2015
Размер файла 255,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКЕ

1. Проводники и диэлектрики. Полярные и неполярные молекулы. Ионные кристаллы. Свободные и связанные заряды. Типы поляризации

I. Проводники и диэлектрики смотри Лекци. 1 по Электростатике.

II. Типы диэлектриков.

Молекула диэлектрика, как и молекула любого другого вещества, электрически нейтральна. Это означает, что суммарный отрицательный заряд электронов равен суммарному положительному заряду ядер.

Если у молекулы в отсутствие внешнего электрического поля центры тяжести положительного и отрицательного зарядов совпадают, то есть дипольный момент молекулы , то такие молекулы называются неполярными. К ним относятся молекулы H2, O2, N2.

Молекулы, у которых в отсутствие внешнего поля центры тяжести положительных и отрицательных зарядов не совпадают, то есть существует дипольный момент , называются полярными. К ним относятся H2O, CO, NH, HCl, SO4, и др.

Ионные кристаллы (NaCl, KBr, KCl) имеют кристаллическое строение. В узлах пространственной решетки расположены с чередованием ионы разных знаков. В ионных кристаллах нельзя выделить отдельные молекулы. Их нужно рассматривать как систему двух подрешеток - положительной и отрицательной.

III. Типы поляризации.

ПОЛЯРИЗАЦИЕЙ диэлектрика называется процесс ориентации диполей или появление под воздействием электрического поля ориентированных по полю диполей.

(Возникновение дипольного момента в диэлектрике называется ПОЛЯРИЗАЦИЕЙ)

В результате поляризации молекула приобретает дипольный момент , величина которого пропорциональна полю

где б - поляризуемость молекулы (характеризует «реакцию» молекулы на электрическое поле). Б - характеристика атома или иона.

В качестве величины, характеризующей степень поляризации диэлектрика, принимается вектор ПОЛЯРИЗОВАННОСТИ - дипольный момент единицы объема (или плотность дипольного момента)

где - дипольный момент одной молекулы, - суммарный дипольный момент объема V.

Трём типам диэлектриков соответствуют три типа поляризации

1. ЭЛЕКТРОННАЯ ПОЛЯРИЗАЦИЯ - возникновение дипольного момента в неполярных молекулах. Электронная поляризация обусловлена смещением электронной оболочки атома относительно ядра во внешнем поле.

диэлектрик поляризация заряд дипольный

2. ИОННАЯ ПОЛЯРИЗАЦИЯ - возникновение дипольного момента в ионных кристаллах, вызванное смещением подрешеток положительных ионов вдоль поля, а отрицательных - против поля.

3. ОРИЕНТАЦИОННАЯ (ДИПОЛЬНАЯ) ПОЛЯРИЗАЦИЯ - возникновение дипольного момента в диэлектрике с полярными молекулами вследствие ориентации дипольных моментов молекул по направлению поля.

IV. СВОБОДНЫЕ И СВЯЗАННЫЕ ЗАРЯДЫ

Заряды, которые при приложении внешнего электрического поля могут свободно перемещаться по проводнику, и не связаны с ионами кристаллической решетки, называются свободными.

Заряды, входящие в состав молекулы, которые под действием внешнего поля лишь немного смещаются из своих положений равновесия, и покинуть пределы молекулы не могут, называются связанными.

2. Напряженность поля в диэлектрике

У изотропных диэлектриков вектор поляризации линейно зависит от напряженности поля

где ч - ДИЭЛЕКТРИЧЕСКАЯ ВОСПРИМЧИВОСТЬ вещества, показывает, как диэлектрик реагирует (воспринимает) на внешнее электрическое поле.

б - характреистика отдельной молекулы (иона), ч - характеристика всего диэлектрика, то есть характреистика вещества в целом. ч не зависит от и в слабых полях. ч - безразмерная величина

Если между пластинами плоского конденсатора поместить слой диэлектрика, то в результате поляризации положительные заряды в диэлектрике сместятся по полю, а отрицательные - против поля, и на правой грани (по рисунку) возникнет избыток положительных, а на левой гране - избыток отрицательных зарядов с поверхностной плотностью +у' и -у'. Эти заряды создадут внутри диэлектрической пластины однородное поле, напряженность которого по теореме Гаусса равна

где - поверхностная плотность связанных зарядов.

Вне диэлектрика . Внешнее поле и внутренн направлены навстречу друг другу, следовательно, внутри диэлектрика

Вне диэлектрика .

Определим поверхностную плотность связанных зарядов . Полный дипольный момент пластинки диэлектрика

где S - площадь грани пластинки, d - её толщина. С другой стороны, полный дипольный момент равен

где Q' - связанный заряд каждой грани, d- плечо диполя.

или

Поверхностная плотность связанных зарядов равна поляризованности (поляризации) Р.

Тогда поле внутри диэлектрика

Безразмерная величина называется ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ среды. Е показывает во сколько раз поле ослабляется диэлектриком, характеризуя количественно свойство диэлектрика поляризоваться в электрическом поле.

3. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике

Для описания электрического поля, в частности, в диэлектрике, вводят в рассмотрение вектор электрического смещения (вектор электростатической индукции) , равный

Результирующее поле в диэлектрике описывается вектором напряженности . зависит от свойств диэлектрика (от е). Вектором описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать перераспределение свободных зарядов, создающих поле. Поэтому вектор характеризует электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Силовые линии вектора могут начинаться и заканчиваться как на свободных, так и на связанных зарядах. Силовые линии вектора - только на свободных. Через области поля, где находятся связанные заряды, силовые линии вектора проходят не прерываясь.

ПОТОК ВЕКТОРА через произвольную замкнутую поверхность

ТЕОРЕМА ГАУССА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИКЕ:

Поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов:

Размещено на Allbest.ru


Подобные документы

  • Конструкция и область применения различных типов кабеля. Тепловой пробой твердых диэлектриков. Зависимость пробивного напряжения в твердом диэлектрике от частоты. Классификация магнитных материалов и требования к ним. Основные виды поляризации.

    реферат [1,3 M], добавлен 04.12.2014

  • Кинематика материальной точки. Законы Ньютона и законы сохранения. Постоянное электрическое поле. Теорема Гаусса. Потенциал - энергетическая характеристика поля. Электроемкость уединенного проводника. Электрическое поле в диэлектрике. Закон Ома.

    курс лекций [1021,2 K], добавлен 09.02.2010

  • Сверхпроводники и возможности их применения в электротехнике. Зависимость пробивного напряжения в твердом диэлектрике от температуры и частоты. Поляризация диэлектриков и диэлектрическая проницаемость. Нагревостойкость твердых и жидких диэлектриков.

    реферат [968,8 K], добавлен 12.02.2013

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Понятие диэлектрических потерь. Нагревание диэлектриков в электрическом поле, рассеивание части энергии поля в виде тепла как его следствие. Ухудшение свойств и ускорение процессов старения диэлектриков. Количественная оценка диэлектрических потерь.

    презентация [794,0 K], добавлен 28.07.2013

  • Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.

    курсовая работа [99,5 K], добавлен 25.04.2010

  • Вращение плоскости поляризации света и естественная циркулярная анизотропия. Дополнительный поворот плоскости поляризации света. Явление намагничивания диэлектриков, помещаемых во вращающееся электрическое поле. Намагничивание изотропной среды.

    курсовая работа [52,0 K], добавлен 13.03.2014

  • Изучение уравнения электромагнитного поля в среде с дисперсией. Частотная дисперсия диэлектрической проницаемости. Соотношение Крамерса–Кронига. Особенности распространения волны в диэлектрике. Свойства энергии магнитного поля в диспергирующей среде.

    реферат [111,5 K], добавлен 20.08.2015

  • Сущность электростатического поля, определение его напряженности и графическое представление. Расчет объемной и линейной плотности электрического заряда. Формулировка теоремы Гаусса. Особенности поляризации диэлектриков. Уравнения Пуассона и Лапласа.

    презентация [890,4 K], добавлен 13.08.2013

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.