Розв’язання періодичних граничних задач теорії пружності для багатошарових плит за допомогою рядів

Аналіз розвитку теорії пружних багатошарових середовищ. Плоска деформація пружної багатошарової плити під дією періодичної системи навантажень. Просторова задача про деформації пружної багатошарової основи під дією системи навантажень, контактні задачі.

Рубрика Физика и энергетика
Вид автореферат
Язык украинский
Дата добавления 26.09.2015
Размер файла 63,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

Величко Олена Вадимівна

УДК 539.3

РОЗВ'ЯЗАННЯ ПЕРІОДИЧНИХ ГРАНИЧНИХ ЗАДАЧ ТЕОРІЇ ПРУЖНОСТІ ДЛЯ БАГАТОШАРОВИХ ПЛИТ ЗА ДОПОМОГОЮ РЯДІВ

01.02.04 - механіка деформівного твердого тіла

АВТОРЕФЕРАТ

дисертації на здобуття наукового ступеня

кандидата фізико - математичних наук

Донецьк - 2008

ДИСЕРТАЦІЄЮ Є РУКОПИС

Робота виконана в Запорізькому національному університеті Міністерство освіти і науки України

Науковий керівник

доктор фізико-математичних наук, професор

Приварников Аркадій Костянтинович, Запорізький національний університет, завідувач кафедри алгебри та геометрії

Офіційні опоненти:

доктор фізико-математичних наук, професор

Гоман Олег Гаврилович, Дніпропетровський національний університет, завідувач кафедри аерогідромеханіки;

кандидат фізико-математичних наук, доцент

Алтухов Євген Вікторович, Донецький національний університет, доцент кафедри теорії пружності та обчислювальної математики

Захист відбудеться “ 20 березня 2008 р. о 1430 годині на засіданні спеціалізованої вченої ради К 11.051.05 при Донецькому національному університеті за адресою: 83055, м. Донецьк, вул. Університетська, 24, головний корпус, математичний факультет, ауд. 603.

З дисертацією можна ознайомитись у бібліотеці Донецького національного університету (83055, м. Донецьк, вул. Університетська, 24).

Відгук на автореферат просимо надсилати за адресою: 83055, м. Донецьк, вул. Університетська, 24, Донецький національний університет, вченому секретарю спеціалізованої ради К 11.051.05.

Автореферат розісланий 19 лютого 2008 р.

Вчений секретар

спеціалізованої вченої ради Ю.В. Мисовський

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Багатошаровими плитами та основами моделюються конструкції, які мають шарувату структуру, а також ті, у яких пружні характеристики неперервно змінюються в одному з напрямків. Прикладами таких конструкцій є дорожні та аеродромні покриття, підлоги промислових будівель, міжповерхові перекриття, мости.

Найбільш ефективним методом точного розв'язання задач теорії пружності для пружних шаруватих середовищ на теперішній час є метод функції податливості. Але цей метод можна застосовувати лише у випадках, коли головний вектор поверхневих навантажень на середовище є скінченним. Періодичне навантаження пружної багатошарової основи є, наприклад, статичним наближенням навантаження на дорожнє покриття, яке здійснює потік машин. Періодично навантажена багатошарова плита моделює міжповерхове перекриття в будинку. При таких періодичних навантаженнях головний вектор є нескінченним. Існують лише окремі роботи, присвячені проблемі визначення НДС багатошарових конструкції при переодичному навантаженні. Тому систематичне дослідження періодичних задач теорії пружності для багатошарових плит є актуальним.

Зв'язок роботи з науковими програмами, планами, темами. Проведені в дисертаційній роботі дослідження пов'язані з фінансованою за рахунок видатків загального фонду державного бюджету науково-дослідною роботою “Розв'язання основних і мішаних граничних задач теорії пружності для шаруватих середовищ періодичної структури та основ з отворами” (№ держреєстрації 0106У008388, 2006-2008 рр. на підставі рішення науково-експертної ради). Частина результатів роботи використана у звітах по зазначеній НДР.

Мета і задачі дослідження. Метою дисертації є побудова точних розв'язків основних і наближених розв'язків мішаних періодичних граничних задач для пружних багатошарових плит та основ.

Для досягнення цієї мети необхідно було:

· розробити нові методики розв'язання задач визначення напружено-деформованого стану періодично навантаженої пружної багатошарової плити (основи) у плоскій та просторовій постановках;

· дослідити ефективність розроблених методик та вірогідність результатів, які отримуються;

· розв'язати нові основні та мішані задачі теорії пружності для періодично навантажених багатошарових плит (основ);

· провести чисельні дослідження і виявити нові фізико-механічні закономірності;

Об'єктом дослідження є напружено-деформований стан багатошарової пружної плити та багатошарової пружної основи, на яку діє періодична система навантажень.

Предметом дослідження є розробка ефективних аналітичних методів визначення напружень та переміщень точок багатошарової плити або основи, яка знаходиться під дією періодичної системи навантажень в рамках лінійної теорії пружності.

Методи дослідження. Для досягнення сформульованої мети в роботі використано ряд математичних методів. При отриманні розв'язку першої основної граничної задачі теорії пружності для шару використано метод простих та подвійних тригонометричних рядів. При розв'язанні основних граничних задач для багатошарової плити та основи узагальнено метод функцій податливості. У задачі про стискання плити періодичною системою штампів застосовується метод сингулярних інтегральних рівнянь. На етапі чисельної реалізації розв'язання отриманих інтегральних рівнянь використано ортогональні поліноми та метод колокації.

Достовірність наукових положень і висновків дисертаційної роботи забезпечується коректною математичною постановкою задачі; строгістю використаних математичних методів; точним задоволенням заданим умовам на границях плити (основи) і на плоскостях спряження шарів; збіганням результатів розрахунків для випадків плоскої деформації та просторової деформація при відповідних навантаженнях; збіганням результатів аналітичного розв'язання основних і мішаних задач для пружного півпростору, з результатами, отриманими іншими авторами. Усі отримані результати не суперечать фізичному сенсу.

Наукова новизна одержаних результатів полягає в наступному:

· знайдені загальні розв'язки задач про напружено-деформований стан періодично навантаженої багатошарової плити (основи) в плоскії та просторовій постановці;

· побудовані інтегральні рівняння періодичних контактних задач для пружних багатошарових плит та основ;

· розроблено наближений метод розв'язання отриманих інтегральних рівнянь;

· отримані теоретичні розв'язки ряду нових задач, дана їх алгоритмізація, складено програми для їх чисельної реалізації на ЕОМ;

· проведені детальні чисельні дослідження, виявлені нові фізико-механічні закономірності зміни напружено-деформованого стану багатошарових плит та основ в залежності від навантаження, кількості шарів, їх товщини та пружних характеристик.

Практичне значення одержаних результатів. Отримані результати можуть бути застосовані для досліджень впливу на міцність і стійкість пружних багатошарових середовищ характеристик шарів, із яких ці середовища складаються. Оскільки розв'язок основних граничних задач теорії пружності для багатошарових плит та основ записано у вигляді рядів, для коефіцієнтів яких відомі точні формули, то є можливість отримати чисельні результати з наперед заданою точністю. Це дає можливість використовувати результати дисертації як тестові при розробці чисельних методів розв'язання задач теорії пружності.

Апробація результатів дисертації. Окремі результати дисертаційної роботи доповідалися на

· наукових семінарах кафедри алгебри і геометрії Запорізького національного університету 2004, 2005, 2006 та 2007 рр.

· наукових конференціях викладачів та студентів Запорізького національного університету 2004, 2005, 2006 рр.

· міжнародній науково-технічній конференції „Інтегровані комп'ютерні технології в машинобудуванні” ІКТМ'2004 (м. Харків, 2004 р.)

· Третій регіональній конференції молодих дослідників „Актуальні проблеми математики та інформатики” (м. Запоріжжя, 2005 р.)

· конференції молодих учених із сучасних проблем механіки і математики імені академіка Я. С. Підстригача (м. Львів, 2005р.)

· конференції „Сучасні тенденції розвитку інформаційних технологій в науці, освіті та економіці” (м. Луганськ, 2006 р.)

Повністю дисертація розглядалась на

· науковому міжвузівському семінарі „Актуальні проблеми математики та механіки” (м. Запоріжжя, 2006 р.);

· міжвузівському науковому семінарі при кафедрі прикладної математики і математичного моделювання Херсонського національного технічного університету (м. Херсон, 2006р.)

· науковому семінарі кафедри теорії пружності та обчислювальної математики Донецького національного університету (м. Донецьк, 2007р.)

Публікації та особистий внесок здобувача. Основні результати дисертації опубліковані в 10 наукових роботах, із них 5 - статті в наукових журналах, затверджених ВАК України фаховими виданнями [2, 3, 5, 6, 10], 4 - тези наукових конференцій [4, 7-9].

Основні результати роботи отримані автором самостійно. Робота [10] написана разом з науковим керівником проф. А.К. Приварниковим. У цій статті співавтору проф. А.К. Приварникову належить участь у постановці задачі, обговорення плану і результатів чисельних розрахунків.

Особисто автору належать такі, включені до дисертаційної роботи і публікацій, результати:

· розробка аналітичного способу визначення напружень і переміщень в шарах пружних багатошарових плит та основ, на які діють періодичні системи навантажень. Розповсюдження методу функцій податливості на новий клас об'єктів;

· отримання інтегральних рівнянь періодичних контактних задач для пружних багатошарових плит та основ. Розробка способу наближеного розв'язання інтегральних рівнянь;

· перетворення розрахункових формул до вигляду, який допускає надійну чисельну реалізацію. Складання програм на ЕОМ, які реалізують отримані розв'язки;

· проведення чисельних досліджень впливу пружних характеристик шарів на напружено - деформівний стан багатошарових плит та основ, виявлення нових механічних ефектів.

Структура і обсяг дисертації. Дисертація складається із вступу, чотирьох розділів, списку використаних джерел. Загальний обсяг дисертації 148 сторінок. Дисертація містить 58 рисунків, які розташовані на 27 сторінках. Список використаних джерел розташований на 20 сторінках і складається із 203 найменувань.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтовано актуальність теми дисертаційної роботи, зазначено її зв'язок з науковими програмами, сформульовано мету і задачі дослідження, подано характеристику наукової новизни, теоретичного та практичного значення одержаних результатів, відзначено особистий внесок здобувача.

У першому розділі зроблено огляд стану досліджуваної проблеми. Наведено аналіз праць дослідників, які внесли істотний вклад у розвиток теорії пружних багатошарових середовищ та періодичних задач теорії пружності. Серед них В.М. Александров, Є.В. Алтухов, І.Г. Альперін, І.І. Аргатов, В.І. Блох, В.В. Бурнаєва, А.Т. Василенко, С.Л. Вольський, І.І. Ворович, Ю.Я. Годес, О.Г. Гоман, А.Г. Горшков, М.І. Горбунов-Посадов, І.Г. Горячева, М.А. Греков., Я.М. Григоренко, О.М. Гузь, І.О. Гузь, А.П. Дацишин, М.М. Діхтярук, В.М. Ільман, Г.С. Кіт, А.С. Космодаміанський, В.Д. Ламзюк, Т.А. Маліков, А.В. Марчук, Ю.А. Наумов, Н.Д. Панкратов, В.І. Петришин, В.Г. Піскунов, В.І. Пожуєв, А.К. Приварников, Б.В. Процюк, Р.М. Раппопорт, А.О. Рассказов, Л.Г. Романенко, М.П. Саврук, М.А. Садовський, В.М. Синюта, В.І. Соломін, Є.А. Ткаченко, Є.В. Торська, Л.А. Фільштинський, В.М. Чехов, В.А. Шалдирван, Г.С. Шапіро, Ю.А. Шевляков, О.Я. Шехтер, Н.А. Шульга, D.M. Burmister, Е. Carrera, U. Icardi, A.K. Rao, E. Scarpetta, M. Di Sciuva, S. Srinivas, M. Sumbatyan, H. Westergaard та інші. Зроблено огляд класичних результатів та результатів, отриманих за останні роки.

На основі аналізу літератури зроблено висновки, що дослідження шаруватих тіл є практично важливою задачею, про що свідчить велика кількість публікацій на цю тему. Поряд із великою кількістю статей, присвячених чисельним методам розв'язання основних і мішаних задач для пружних багатошарових середовищ, існують роботи, у яких ця задача розв'язується точно.

Найбільш зручним методом розв'язання основних граничних задач для пружних плит (основ), не обмежених в одному або двох напрямках, є метод інтегральних перетворень Фур'є або Ханкеля. При великій кількості шарів в основі ефективним виявляється метод функцій податливості дослідження напружено-деформованого стану основи.

До періодичних задач указані інтегральні перетворення не можна застосовувати, оскільки в цьому випадку навантаження на межах тіла може не мати скінченного головного вектора. Тому в цьому випадку треба застосовувати спеціальні методи, які, як правило, базуються на теорії тригонометричних рядів. Переважна кількість робіт в цьому напрямку присвячена дослідженню одно- або двошарових основ або плит.

При дослідженні будь-якої контактної задачі треба спочатку побудувати інтегральне рівняння, а потім вже його розв'язувати зручним методом. Левова частка розглянутих робіт присвячується якраз розв'язкам інтегральних рівнянь з періодичними ядрами. А от будуються ці рівняння, як правило, лише для півплощини або шару, зв'язаного з півплощиною. Це пов'язано з тим, що існують певні труднощі з побудовою розв'язку основних граничних задач для істотно багатошарових середовищ.

Тому задача розповсюдження методу функцій податливості (в періодичному випадку йдеться про матриці податливості) на випадок періодично навантажених середовищ є актуальною.

У другому розділі розглядається плоска деформація пружної багатошарової плити під дією періодичної системи навантажень.

Під багатошаровою плитою розуміється пакет із невагомих, зчеплених між собою шарів. Шар - це частина простору, обмежена двома паралельними площинами. Матеріал шару є однорідним та ізотропним. На верхній та нижній межах плити відомі навантаження, які описуються періодичними функціями. Треба визначити напруження та переміщення в точках плити. Задача розв'язується в рамках лінійної теорії пружності. Якщо плита зчеплена з півпростором (пружним або абсолютно жорстким), то йтиметься про багатошарову основу. Шари нумеруються зверху вниз. У кожному шарі вводиться декартова система координат з початком на верхній межі шару. Прикладені навантаження є періодичними по змінній з періодом .

Для кожного шару вводяться допоміжні послідовності , пов'язані з розвиненнями в ряд Фур'є напружень та переміщень точок верхньої межі шару:

,

,

,

.

Показано, що для визначення напруженого стану шару достатньо знати вісім його допоміжних послідовностей. Із умов зчеплення на загальній межі шарів отримано рекурентні співвідношення між допоміжними послідовностями сусідніх шарів. Таким чином, задача визначення НДС плити зводиться до визначення вісімки допоміжних послідовностей першого шару. Із граничних умов можна безпосередньо визначити четвірку допоміжних послідовностей першого та фіктивного -го шарів.

Встановлено, що елементи допоміжних послідовностей пов'язані між собою співвідношеннями

,

де ,

- номер гармоніки, - номер шару, - введені автором матриці податливості. Вони є дискретними аналогами функцій податливості, які введені А.К. Приварниковим. У дисертації запропоновано спосіб обчислення матриць податливості, визначені їхні властивості. Аналогічно, для плоскої деформації багатошарової основи введені матриці податливості , які визначаються співвідношеннями

.

Доведено, що всі матриці податливості не залежать від прикладених навантажень і є функціями пружних характеристик та товщин шарів. Якщо матриці податливості визначені, то чотири невідомі допоміжні послідовності першого шару також можна визначити. Таким чином, перша основна гранична задача для пружної багатошарової плити та пружної багатошарової основи може бути розв'язана. Розв'язки записуються у вигляді тригонометричних рядів.

Для підтвердження вірогідності результатів було отримано розв'язки задач про дію на пружну півплощину періодичної системи одиничних нормальних та дотичних сил. Наприклад, для системи одиничних нормальних сил напруження визначається формулою

З цієї формули граничним переходом отримано розв'язок задачі Фламана про дію нормальної одиничної зосередженої сили на пружний півпростір:

.

Наведемо приклад розрахунку. Розглянемо тришарову плиту, яка складається з шарів товщиною . На верхній та нижній межах плити задані нормальні та дотичні напруження, які є - періодичними функціями:

,

,

Для всіх шарів коефіцієнт Пуассона . Модулі зсуву:

.

На графіках цифра означає, що вказана величина відноситься до верхньої межі відповідного шару. Цифра 4 означає, що графік відповідає нижній межі третього шару. Для наочності функції наведені на двох періодах. Графіки напружень на нижній межі першого шару (А) та на верхній межі другого шару (В). Оскільки модулі зсуву цих шарів відрізняються, то, як і слід було очікувати, функції та також не збігаються.

У третьому розділі розглядається просторова задача про деформації пружної багатошарової плити та пружної багатошарової основи під дією системи навантажень. Навантаження є періодичними по змінних (період ) та (період ).

Розв'язки шукаються у вигляді подвійних тригонометричних рядів. Результати цього розділу є узагальненням результатів розділу 2 на випадок просторової задачі.

Як і в другому розділі, для кожного шару вводяться допоміжні послідовності (тільки у випадку просторової деформації їх буде 24), встановлюються рекурентні співвідношення для елементів допоміжних послідовностей сусідніх шарів, вводяться матриці податливості.

Для матриць податливості побудовані рекурентні співвідношення, які дозволяють їх обчислити для будь-якого шару будь-якої гармоніки, встановлені їх властивості. Наводяться алгоритми розв'язків першої основної граничної задачі теорії пружності для багатошарових плит та основ, які навантажені двоперіодичним навантаженням.

Нижче наведені нормальні напруження у тришаровій плиті, яка складається із шарів товщиною

,

коефіцієнти Пуассона всіх шарів , модулі зсуву пов'язані співвідношеннями

.

Напруження на верхній межі плити

.

Навантаження на нижній межі плити

,

.

При заданих напруженнях плита знаходиться в умовах плоскої деформації, і розв'язок цієї ж задачі як двовимірної було наведено в розділі 2. Порівняння свідчить, що результати мають гарний збіг.

Четвертий розділ присвячено розгляду контактних задач.

Побудовано інтегральне рівняння задачі про дію періодичної системи штампів (на кожен з яких тисне сила ) з плоскими підошвами на багатошарову основу. Деформація вважається плоскою.

Воно має вигляд

,

де - функція контактних напружень під штампом, - напівширина штампа,

,

- елементи матриць податливості першого шару. Наближений розв'язок цього рівняння шукається у вигляді

де поліноми Чебишова. У дисертації наведена система лінійних рівнянь для визначення невідомих . Показано, що у випадку пружної півплощини це інтегральне рівняння розв'язується точно і отриманий розв'язок збігається з формулою Садовського.

Приклад розрахунку. Розглянута основа, яка складається з трьох пружних шарів товщиною 1, зчеплених з абсолютно жорстким півпростором. Довжина підошви штампа дорівнює , відстань між центрами штампів , коефіцієнти Пуассона всіх шарів . Побудовані графіки функції приведених тисків

для випадків коли:

1) модуль зсуву середнього шару в 10 разів більше, ніж у зовнішніх шарів;

2) пружні характеристики всіх трьох шарів однакові;

3) модуль зсуву середнього шару в 10 разів менше, ніж у зовнішніх шарів.

Також у цьому розділі розглядається плоска контактна періодична задача для багатошарової плити, коли на верхню межу плити діє періодична система штампів, а на нижню - періодична система навантажень.

Граничні умови (у межах одного періоду )

,,

,

Використавши зв'язок між допоміжними послідовностями першого і фіктивного шару з номером

,

отримано інтегральне рівняння задачі у вигляді

.

Тут

, .

Розв'язується це рівняння таким самим методом, як і в попередньому підрозділі.

За допомогою цих методів досліджувався вплив вигляду навантажень на нижній межі одношарової плити на розподіл контактних напружень під штампом. Товщина шару - 2, період - , ширина штампа - .

Локалізація навантажень на нижній межі призводить до збільшення контактних тисків в центрі штампа, а області мінімальних тисків зсуваються до країв штампа.

Розглянемо періодичну систему штампів, які тиснуть на тришарову плиту з товщинами шарів:

та коефіцієнтами Пуассона . Довжина кожного штампа - . Нормальні напруження на нижній межі плити постійні, модулі зсуву зовнішніх шарів збігаються:

.

Наведені графіки функцій приведених тисків

під штампом для різних значень модулів зсуву середнього шару. Для порівняння наведено розв'язок Садовського для пружної півплощини.

У випадку, коли верхній шар значно жорсткіший, ніж середній, у зоні контакту виникають розтягуючі напруження. Для випадку одного штампа з плоскою підошвою цей ефект відомий. Присутність системи штампів призводить до того, що таких зон, у яких контактні тиски від'ємні, буде вже декілька.

ОСНОВНІ РЕЗУЛЬТАТИ І ВИСНОВКИ

пружний плита деформація

Внаслідок проведених у роботі досліджень метод функцій податливості розв'язання основних граничних задач теорії пружності для багатошарових основ перенесено на випадок деформації багатошарових плит (основ), які знаходяться під дією періодичної системи навантажень.

Основні наукові результати і висновки, що одержані в роботі, такі:

Запропоновано спосіб визначення напружень і переміщень в шарах пружних багатошарових плит та основ, на які діють періодичні системи навантажень. Спосіб є ефективним для середовищ з будь-якою скінченною кількістю шарів. Шукані величини представлені у вигляді тригонометричних рядів. Наводяться точні формули для коефіцієнтів цих рядів.

Введені нові математичні об'єкти: матриці податливості, які значно полегшують процес розв'язання основних граничних задач теорії пружності для багатошарових плит (основ), які знаходяться під дією періодичної системи сил. Розроблено спосіб обчислення матриць податливості, досліджені їхні властивості, які дозволяють контролювати точність обчислень.

Для випадку, коли напруження на границях можуть бути представлені тригонометричним рядом зі скінченною кількістю доданків, отримано точний розв'язок першої основної граничної задачі теорії пружності для багатошарових плит та основ.

Запропоновано спосіб розв'язання (у подвійних тригонометричних рядах) основних граничних задач теорії пружності для багатошарових плит (основ), які знаходяться під дією двоперіодичної системи навантажень. Цей спосіб є ефективним для середовищ із будь-яким скінченним числом шарів.

Встановлено зв'язок між нормальними напруженнями на межах плити (основи) і нормальними переміщеннями точок межі. Записані інтегральні рівняння таких задач (випадок плоскої деформації):

- про дію періодичної системи штампів на багатошарову основу;

- про тиск періодичної системи штампів на багатошарову плиту, на іншу межу якої діє періодична система навантажень.

Виділені сингулярні і регулярні частини ядер. Запропоновано спосіб наближеного розв'язання отриманих рівнянь Фредгольма першого роду.

Для задачі про дію на пружну півплощину періодичної системи штампів з плоскою та неплоскою підошвами отримані точні вирази для контактних тисків, які збігаються з відомими раніше результатами Садовського, Вестергаарда та Штаєрмана, які застосовували інші математичні методи.

Розроблені програми для ЕОМ у системі Maple, які реалізують запропоновані методи розв'язання задач для плит та основ. Проведені чисельні експерименти.

Встановлено низку механічних ефектів, таких як

- можливість утворення зон відставання плити від штампів з плоскою підошвою у випадку, якщо модуль зсуву верхнього шару плити значно більший за модуль зсуву сусіднього шару;

- збільшення контактних тисків поблизу середин штампів з плоскою підошвою при локалізації навантажень на нижній межі плити в задачі про тиск періодичної системи штампів на багатошарову плиту, на іншу межу якої діє періодична система навантажень;

та інших.

Наведені в дисертації результати можуть бути застосовані для досліджень впливу на напружено-деформівний стан багатошарових плит (основ) характеристик шарів, із яких ці середовища складаються, а також для тестування чисельних методів розв'язання задач теорії пружності.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. Яресько Е.В. Применение слоистых функций к исследованию плоской деформации слоя // Задачи механики многослойных сред и их численная реализация: Сб. научн. ст. - Запорожье: ЗГУ, 2002. - С.63-68.

2. Величко О.В. Плоска деформація пружної багатошарової плити під дією періодичної системи навантажень// Вісник Дніпропетровського ун-ту. Сер. механіка. - 2004. - №6. - Вип.8, т.1. - С. 162-170.

3. Величко О.В. Деформація пружної багатошарової плити під дією періодичної системи навантажень // Вісник Дніпропетровського ун-ту. Сер. механіка. - 2004. - №6/2. - Вип.8, т.2. - С.28-35.

4. Величко О.В. Точное решение задачи о плоской деформации периодически нагруженной многослойной плиты // Тези конф. „Інтегровані комп'ютерні технології в машинобудуванні”.- Харків. - 2004. - С.45.

5. Величко О.В. Дослідження деформації пружної багатошарової основи під дією періодичної системи навантажень// Прикл. пробл. мех. і мат. - 2005.- Вип.3. - С.114-121.

6. Величко О.В. Плоска періодична контактна задача для багатошарової основи// Вісник Дніпропетровського ун-ту. Сер. механіка. - 2005. - №10/1. - Вип. 9, т.1. - С. 118-124.

7. Величко О.В. Дослідження просторової деформації пружної багатошарової плити під дією двоперіодичної системи навантажень // Тези третьої регіональн. конф. мол. дослідників „Актуальні проблеми математики та інформатики”. - Запоріжжя. - 2005. - С.33-34.

8. Величко О.В. Дослідження деформації пружної багатошарової основи під дією періодичної системи навантажень // Тези конф. молодих учених із сучасних проблем механіки і математики ім. акад. Я.С. Підстригача. - Львів. - 2005. - С.28.

9. Величко О.В. Реалізація на ЕОМ розв'язків періодичної контактної задачі для пружної багатошарової плити// Матеріали Всеукр. наук.-практ. конф. „Сучасні тенденції розвитку інформаційних технологій в науці, освіті та економіці”. - Луганськ. - 2006. - С. 150-152.

10. Величко Е.В., Приварников А.К. Плоская периодическая контактная задача для упругой многослойной плиты // Динамические системы: мiжвiд. наук. зб. -- Сімферополь:ТНУ, 2007. -- Вип 23. -- С.3-10.

АНОТАЦІЇ

Величко О.В. Розв'язання періодичних граничних задач теорії пружності для багатошарових плит за допомогою рядів. - Рукопис.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.02.04 - механіка деформівного твердого тіла.

У роботі запропоновано спосіб розв'язання в тригонометричних рядах основних граничних задач теорії пружності для істотно багатошарових плит та основ, які навантажені періодичними системами сил. Для цього уведені такі поняття, як допоміжні послідовності шару і матриці податливості плити (основи). Розглянуто випадки плоскої і просторової деформації. Досліджені властивості матриць податливості і наведені рекурентні співвідношення для їх обчислення. Отримані інтегральні рівняння періодичних контактних задач для багатошарових плит і основ. З'ясовано характер особливостей ядер цих рівнянь. Запропоновані і реалізовані на ЕОМ наближенні способи розв'язку отриманих інтегральних рівнянь. Наведені приклади розрахунків.

Ключові слова: напруження, пружна багатошарова плита, пружна багатошарова основа, ряд Фур'є, штамп, інтегральне рівняння, матриця податливості.

Величко Е.В. Решение периодических граничных задач теории упругости для многослойных плит при помощи рядов. - Рукопись.

Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.02.04 - механика деформируемого твердого тела.

В работе предложен способ решения (в тригонометрических рядах для плоской деформации и двойных тригонометрических рядах для пространственной деформации) основных граничных задач теории упругости для многослойных плит и оснований, которые нагружены периодическими системами сил. Для каждого слоя вводятся вспомогательные последовательности слоя, связанные с коэффициентами тригонометрических разложений перемещений и напряжений на верхней границе слоя. Получены выражения для компонент тензора напряжений и вектора перемещений точек слоя через его вспомогательные последовательности. Показано, что для решения задачи достаточно знать вспомогательные последовательности только верхнего слоя. Введены матрицы податливости, позволяющие находить элементы тех вспомогательных последовательностей верхнего слоя, которые нельзя найти непосредственно из граничных условий. Исследованы свойства матриц податливости и приведены рекуррентные соотношения для их вычисления.

В том случае, если нагрузка на границе многослойной плиты или основания задается тригонометрическим многочленом, данный метод позволяет получить точное решение. Он применим для расчета оснований и плит с любым конечным числом слоев. В работе приведены решения некоторых тестовых задач. В частности, доказано, что в предельном случае получаются классические решения Буссинеска и Черрути.

Для задачи о плоской деформации многослойного основания периодической системой штампов с плоской подошвой получено интегральное уравнение типа Карлемана, ядро которого содержит элементы матриц податливости основания. Предлагается способ приближенного решения полученного интегрального уравнения Фредгольма первого рода с логарифмическим ядром. Показано, что для однородной упругой полуплоскости получается классическое решение Садовского.

Для многослойной плиты рассматриваются задачи, когда на верхнюю границу плиты действует периодическая система штампов с плоской подошвой, а на нижнюю - периодическая система сил, уравновешивающая давление штампов. Строится интегральное уравнение, приводятся результаты расчетов.

Подробно рассматриваются вопросы численной реализации полученных точных решений для основных граничных задач теории упругости и приближенных решений приведенных контактных задач.

Ключевые слова: напряжения, упругая многослойная плита, упругое многослойное основание, ряд Фурье, штамп, интегральное уравнение, матрица податливости.

Velichko H.V. The solution of periodically boundary problems of the elasticity theory for the multilayer plates with the help of the series.- Manuscript

The thesis for the Candidate of physical and mathematical sciences degree on specialty 01.02.04 - mechanics of a deformable solid body.

The work presents the method of the solution in trigonometric series of the basic boundary problems of the elasticity theory for the multilayer plates and the foundations, which are loaded by the periodic system of the forces. Such notion as the additional sequences of the layer and the compliance matrices of the plate (foundation). The cases of the plane deformation and the space deformation are considered. We have examined their properties and obtained the recursion relation for their calculation. The integral equations for some periodic contact problems for the multilayer plates and foundations have been obtained. The type of the particularities of the kerns of these equations is established. The approximate methods of the solution of the obtained integral equations with the help of the computers are proposed. The numerical results are given.

Key words: stress, elastic multilayer plate, elastic multilayer foundation, Fourier series, stamp, integral equation, compliance matrix.

Размещено на Allbest.ru


Подобные документы

  • Основні властивості пластичної та пружної деформації. Приклади сили пружності. Закон Гука для малих деформацій. Коефіцієнт жорсткості тіла. Механічні властивості твердих тіл. Механіка і теорія пружності. Модуль Юнга. Абсолютне видовження чи стиск тіла.

    презентация [6,3 M], добавлен 20.04.2016

  • Деформація - зміна форми чи об’єму твердого тіла, яка викликана дією зовнішніх сил. Залишкова деформація та межа пружності. Дослідження залежності видовження зразка капронової нитки від навантаження. Визначення модуля Юнга для капрону. Закон Гука.

    лабораторная работа [80,5 K], добавлен 20.09.2008

  • Види пружних деформацій: розтяг, стиск, зсув, згин, кручення. Закон Гука. Пропорційність величини деформації прикладеним силам. Коефіцієнт сили пружності. Модулі пружності. Коефіціент Пуасона. Фізичний зміст модуля Юнга. Явище пружного гістерезису.

    лекция [448,2 K], добавлен 21.09.2008

  • Визначення об’ємного напруженого стану в точці тіла. Рішення плоскої задачі теорії пружності. Епюри напружень в перерізах. Умови рівноваги балки. Рівняння пружної поверхні. Вирази моментів і поперечних сил. Поперечне навантаження інтенсивності.

    контрольная работа [1,2 M], добавлен 10.12.2010

  • Суть процесу формування верхнього шару металу в умовах пружної і пластичної деформації. Дослідження структурних змін і зарядового рельєфу поверхні при втомі металевих матеріалів. Закономірності формування енергетичного рельєфу металевої поверхні.

    курсовая работа [61,1 K], добавлен 30.06.2010

  • Методи наближеного розв’язання крайових задач математичної фізики, що виникають при моделюванні фізичних процесів. Використання засобів теорії наближень атомарними функціями. Способи розв’язання крайових задач в інтересах математичного моделювання.

    презентация [8,0 M], добавлен 08.12.2014

  • Розвиток асимптотичних методів в теорії диференціальних рівнянь. Асимптотичні методи розв’язання сингулярно збурених задач конвективної дифузії. Нелінійні моделі процесів типу "конвекція-дифузія-масообмін". Утворення речовини, що випадає в осад.

    курсовая работа [1,0 M], добавлен 23.04.2017

  • Опис технологічного процесу проектування системи електропостачання машинобудівного заводу. Визначення розрахункових електричних навантажень. Вибір системи живлення електропостачання та схем розподільних пристроїв вищої напруги з урахуванням надійності.

    дипломная работа [446,9 K], добавлен 21.02.2011

  • Ознайомлення із дією сонячних електростанцій баштового типу. Визначення сонячної радіації та питомої теплопродуктивності установки. Оцінка показників системи гарячого водопостачання. Аналіз ефективності використання геліоустановки й визначення її площі.

    курсовая работа [3,4 M], добавлен 30.09.2014

  • Вивчення законів, на яких ґрунтується молекулярна динаміка. Аналіз властивостей та закономірностей системи багатьох частинок. Огляд основних понять кінетичної теорії рідин. Розрахунок сумарної кінетичної енергії та температури для макроскопічної системи.

    реферат [122,5 K], добавлен 27.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.