Паротурбинные установки
Характеристика паротурбинной установки (ПТУ), ее основные элементы: паровая турбина, ротор, конденсатор, конденсаторный насос, подогреватель низкого давления, деаэратор. Характеристика основных циклов паротурбинных установок. Достоинства и недостатки ПТУ.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 04.06.2015 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
В современной теплоэнергетике широко используются паросиловые установки. Наибольшее распространение получили стационарные паротурбинные установки (ПТУ) тепловых электрических станций (ТЭС), на долю которых приходится более 80% вырабатываемой в стране электроэнергии. паротурбинный установка конденсаторный деаэратор
Среди ТЭС преобладают тепловые паротурбинные установки (ПТУ),на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращения ротор паровой турбины, соединённый с ротором электрического генератора(обычно синхронного генератора).В качестве топлива на таких ТЭС используют уголь(преимущественно), мазут, природный газ.
ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).
1. Паротурбинная установка
Паротурбимнная устаномвка -- это непрерывно действующий тепловой агрегат, рабочим телом которого является вода и водяной пар. Паротурбинная установка является механизмом для преобразования потенциальной энергии сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Включает в себя паровую турбину и вспомогательное оборудование. Паротурбинные установки используются для привода турбогенератора на тепловых и атомных электростанциях.
На электрической станции механическая энергия превращается в электрическую энергию с помощью электрического генератора.
Принципиальная схема паротурбинной установки для привода электрогенератора изображена на рисунке.
Свежий пар из котельного агрегата (1), где он получил тепло от сгорания топлива, поступает в турбину (2) и, расширяясь в ней, совершает механическую работу, вращая ротор электрогенератора (3). После выхода из турбины, пар поступает в конденсатор (4), где происходит его конденсация. Конденсат отработавшего в турбине пара при помощи конденсатного насоса (5) проходит через подогреватель низкого давления (ПНД) (6) в деаэратор (7). Из деаэратора питательный насос (8) подаёт воду через подогреватель высокого давления (ПВД) (9) в котельный агрегат.
Подогреватели (6) и (9) и деаэратор (7) образуют систему регенеративного подогрева питательной воды, которая использует пар из нерегулируемых отборов паровой турбины.
Для эффективной работы пар в турбину должен подаваться с высоким давлением и температурой (от 13 кг/см2/190 oC до 240 кг/см2/550оС). Такие условия предъявляют повышенные требования к котельному оборудованию, что приводит к существенному росту капитальных вложений.
Преимуществом паротурбинной технологии является возможность использования в котле самого широкого спектра топлив, включая твёрдые. Однако использование тяжёлых нефтяных фракций и твёрдого топлива снижает экологические показатели системы, которые определяются составом отходящих из котла продуктов горения.
На существующих тепловых электростанциях новые ПТУ целесообразно использовать при отсутствии возможности внедрения на них газотурбинных и парогазовых технологий.
Паровые турбины с противодавлением целесообразно использовать для модернизации котельных с промышленными паровыми котлами распространенных типов ДКВР, ДЕ (рабочее давление 1,3-1,4 МПа), у которых давление пара на выходе из котлов значительно выше, чем это необходимо для производственных нужд.
При установке в таких котельных паровых противодавленческих турбоагрегатов малой мощности, пропускаемый через ПТУ пар будет срабатываться от начальных параметров на котлах до давления, нужного потребителю, и в результате бесполезно теряемый до этого потенциал пара будет использоваться для выработки малозатратной электрической энергии.
Вырабатываемая ПТУ электроэнергия пойдет на покрытие собственных нужд котельной и предприятия, а ее избыток может продаваться в энергосистему. При этом основной задачей модернизированной котельной продолжает оставаться производство тепла, а электроэнергия является полезным сопутствующим продуктом его производства, значительно улучшающим технико-экономические показатели работы котельной, и может стать дополнительной статьей доходов.
2. Элементы паротурбинной установки
Паровая турбина
Паровая турбина является одним из элементов паротурбинной установки (ПТУ).
Паровая турбина и электрогенератор составляют турбоагрегат.
Паровамя турбимна -- тепловой двигатель, в котором энергия пара преобразуется в механическую работу.
Модель одной ступени паровой турбины
Паровая турбина состоит из двух основных частей. Ротор с лопатками подвижная часть турбины. Статор с соплами -- неподвижная часть.
По направлению движения потока пара различают аксиальные паровые турбины, у которых поток пара движется вдоль оси турбины, и радиальные, направление потока пара в которых перпендикулярно, а рабочие лопатки расположены параллельно оси вращения. В России и странах СНГ используются только аксиальные паровые турбины
По числу цилиндров турбины подразделяют на одноцилиндровые и двух--трёх-, четырёх-пятицилиндровые. Многоцилиндровая турбина позволяет использовать бомльшие располагаемые тепловые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные материалы в частях высокого давления и раздвоение потока пара в частях среднего и низкого давления. Такая турбина получается более дорогой, тяжёлой и сложной. Поэтому многокорпусные турбины используются в мощных паротурбинных установках.
По числу валов различают одновальные, двувальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как соосным, так и параллельным - с независимым расположением осей валов.
Неподвижную часть -- корпус (статор) -- выполняют разъёмной в горизонтальной плоскости для возможности выемки или монтажа ротора. В корпусе имеются выточки для установки диафрагм, разъём которых совпадает с плоскостью разъёма корпуса турбины. По периферии диафрагм размещены сопловые каналы (решётки), образованные криволинейными лопатками, залитыми в тело диафрагм или приваренными к нему.
В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек пара наружу (со стороны высокого давления) и засасывания воздуха в корпус (со стороны низкого). Уплотнения устанавливают в местах прохода ротора сквозь диафрагмы во избежание перетечек пара из ступени в ступень в обход сопел.
На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий турбину при увеличении частоты вращения на 10--12 % сверх номинальной.
3. Классификация паровых турбин
В зависимости от характера теплового процесса паровые турбины подразделяются на 3 основные группы:
конденсационные - без регулируемых (с поддержанием давления) отборов пара;
теплофикационные - с регулируемыми отборами;
турбины специального назначения.
Конденсационные паровые турбины
Схема работы конденсационной турбины:
Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный (мятый) пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Бомльшая часть полученной энергии используется для генерации электрического тока.
Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор (отсюда возникло наименование), в котором поддерживается вакуум. Конденсационные турбины бывают стационарными и транспортными.
Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций -- электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.
Частота вращения ротора стационарного турбогенератора пропорциональна частоте электрического тока 50 Герц (синхронная машина). То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока является одним из главных показателей качества отпускаемой электрической энергии. Современные технологии позволяют поддерживать частоту сети с точностью до 0,2 % (ГОСТ 13109-97). Резкое падение электрической частоты влечёт за собой отключение от сети и аварийную остановку энергоблока, в котором наблюдается подобный сбой.
В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых -- возможность быстрого пуска и включения в работу, от турбин собственных нужд -- особая надёжность в работе. Паровые турбины для электростанций имеют парковый ресурс в 270 тыс. ч. с межремонтным периодом 4-5 лет.
Транспортные паровые турбины используются в качестве главных и вспомогательных двигателей на кораблях и судах. Неоднократно делались попытки применить паровые турбины на локомотивах, однако паротурбовозы распространения не получили. Для соединения быстроходных турбин с гребными винтами, требующими небольшой (от 100 до 500 об/мин) частоты вращения, применяют зубчатые редукторы. В отличие от стационарных турбин (кроме турбовоздуходувок), судовые работают с переменной частотой вращения, определяемой необходимой скоростью хода судна.
Теплофикационные паровые турбины
Схема работы теплофикационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины (3). При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом (4) электрического генератора (5). В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы и из них пар направляется в подогреватели (6) сетевой воды (7). Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Бомльшая часть тепла, полученного в котле используется для подогрева сетевой воды.
Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с:
· противодавлением;
· регулируемым отбором пара;
· отбором и противодавлением.
У турбин с противодавлением весь отработанный пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.
В турбинах с регулируемым отбором часть пара отводится из одной или двух промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования (в советских турбинах для поддержания заданного давления чаще всего используется регулирующая диафрагма за камерой отбора -- ряд направляющих лопаток, разрезанных по перпендикулярной оси турбины плоскости; одна половина лопаток поворачивается относительно другой, изменяя площадь сопел). Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.
У турбин с отбором и противодавлением часть пара отводится из одной или двух промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.
Паровые турбины специального назначения
Паровые турбины специального назначения обычно работают на отбросном тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).
Турбины мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющих давление немного выше атмосферного.
Турбины двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней.
Предвключённые турбины представляют собой агрегаты с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих турбин направляют в другие с более низким начальным давлением пара. Необходимость в предвключённых турбинах возникает при модернизации электростанций, связанной установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции турбоагрегаты.
Также к турбинам специального назначения относятся и приводные турбины различных агрегатов, требующих высокой мощности привода. Например питательные насосы мощных энергоблоков электростанций, нагнетатели и компрессоры газокомпрессорных станций и т. д.
Часто стационарные паровые турбины имеют регулируемые или нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды.
Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.
Ротор
Ротор -- вращающаяся часть электрической машины (генератора или двигателя переменного тока внутри неподвижной части -- статора). Ротор асинхронной электромашины обычно представляет собой собранное из листовой электротехнической стали цилиндрическое тело с пазами для размещения обмотки. Ротор в электромашинах постоянного тока называется якорем.
Конденсатор
Конденсамтор (в теплотехнике) (лат. condenso -- уплотняю, сгущаю) -- теплообменный аппарат, теплообменник,в котором осуществляется процесс конденсации, процесс фазового перехода теплоносителя из парообразного состояния в жидкое за счёт отвода тепла более холодным теплоносителем.
В конденсатор обычно поступают перегретые пары теплоносителя, которые охлаждаются до температуры насыщения и, конденсируясь, переходят в жидкую фазу. Для конденсации пара необходимо отвести от каждой единицы его массы теплоту, равную удельной теплоте конденсации. В зависимости от охлаждающей среды (теплоносителя) конденсаторы могут быть разделены на следующие типы: с водяным охлаждением, с водо-воздушным (испарительным) охлаждением, с воздушным охлаждением, с охлаждением кипящим холодильным агентом в конденсаторе-испарителе, с охлаждением технологическим продуктом. Выбор типа конденсатора зависит от условий применения.
Конденсаторы применяются на тепловых и атомных электростанциях для конденсации отработавшего в турбинах пара. При этом на каждую тонну конденсирующегося пара приходится около 50 тонн охлаждающей воды. Поэтому потребность ТЭС и особенно АЭС в воде очень велика -- до 600 тысяч мі/час. В маловодных районах охлаждение конденсаторов турбин может производиться воздухом (примером могут служить воздушно-конденсационные установки на Разданской ГРЭС, Армения), однако это ухудшает КПД турбин, вследствие повышения температуры конденсации. В турбинах с противодавлением конденсатор отсутствует -- в этом случае весь отработанный пар поступает на производственные нужды.
По принципу теплообмена конденсаторы разделяются на смешивающие (конденсаторы смешения) и поверхностные. В смешивающих конденсаторах водяной пар непосредственно соприкасается с охлаждающей водой, а в поверхностных пары рабочего тела отделены стенкой от охлаждающего теплоносителя. Поверхностные конденсаторы разделяются по следующим особенностям:
· по направлению потоков теплоносителя: прямоточные, противоточные и с поперечным потоком теплоносителей;
· по количеству изменений направления движения теплоносителя -- на одноходовые, двухходовые и др.;
· по количеству последовательно соединённых корпусов -- одноступенчатые, двухступенчатые и др.
· по конструктивному исполнению: кожухотрубные, пластинчатые и др.
В конденсаторах турбин ТЭЦ устраивают отдельный встроенный пучок, который в летнее время используется для охлаждения, а в зимнее время -- для предварительного подогрева сетевой воды. При этом система охлаждения может быть полностью отключена, так как на ТЭЦ зимой в конденсатор попадает небольшое количество пара -- в основном он используется для теплофикации.
Конденсаторный насос
Конденсатный насос - насос (обычно центробежный), предназначенный для перемещения конденсата. Конденсатный насос применяют в разомкнутых системах парового отопления для перемещения конденсата из бака конденсатного в паровой котел. Конструкции конденсатных насосов обеспечивают их надежную работу при температуре перекачиваемого конденсата до 125 и 160 С. В системах парового отопления устанавливаются, как правило, два параллельно работающих конденсатных насосов для суммарной подачи конденсата. Развиваемое каждым конденсатным насосом давление должно быть достаточным для преодоления гидравлического сопротивления конденсатопровода, давления в точке, куда подается конденсат, и гидростатического противодавления при необходимости подъема конденсата. Конденсатный насос заглубляется ниже минимального уровня конденсата в баке на величину, предотвращающую возникновение кавитации в насосе.
Подогреватель низкого давления
Регенеративный подогрев питательной воды применяется в настоящее время на всех паротурбинных установках. Это объясняется тем, что такой подогрев существенно повышает тепловую и общую экономичность установок. В схемах с регенеративным подогревом потоки пара, отводимые из турбины в регенеративные подогреватели, совершают работу без потерь в холодном источнике (конденсаторе). При этом для одной и той же электрической мощности турбогенератора NЭ расход пара в конденсатор уменьшается, а КПД установки увеличивается.
Подогреватели низкого давления предназначены для регенеративного подогрева питательной воды в паротурбинных установках электростанций.
Подогреватели низкого давления (ПНД) располагаются между конденсатором турбины и питательным насосом. Движение воды в них происходит под напором конденсатных насосов.
К регенеративным подогревателям электростанций предъявляются высокие требования по надежности и обеспечению заданных параметров подогрева воды -- они должны быть герметичны и должна быть обеспечена возможность доступа к отдельным их узлам для ремонта и очистки поверхностей нагрева от отложений. Для предотвращения вскипания нагреваемой среды и гидравлических ударов в поверхностях нагрева давление греющего пара должно быть ниже давления воды.
Деаэратор
Деаэратор -- техническое устройство, реализующее процесс деаэрации[1] некоторой жидкости (обычно воды или жидкого топлива), то есть её очистки от присутствующих в ней нежелательных газовых примесей. На многих электрических станциях также играет роль ступени регенерации и бака запаса питательной воды.
Деаэратор -- техническое устройство, реализующее процесс деаэрации(удаление кислорода и других газов из жидкости некоторой жидкости (обычно воды или жидкого топлива), то есть её очистки от присутствующих в ней нежелательных газовых примесей. На многих электрических станциях также играет роль ступени регенерации и бака запаса питательной воды.
4. Циклы паротурбинных установок (ПТУ)
Цикл, в результате которого получается положительная работа называется прямым циклом, или циклом теплового двигателя.
Термический КПД цикла Карно имеет наибольшее значение по сравнению с КПД любого цикла, осуществляемого в одном и том же интервале температур. Поэтому их сравнение позволяет делать заключение о степени совершенства использования теплоты в машине.
Однако не всегда удается осуществить цикл Карно и процессы его сопровождающие. Так, цикл Карно при использовании водяного пара в качестве рабочего тела, имеет ряд существенных недостатков и мало эффективен.
За основной цикл в паротрубной установке (ПТУ) принят идеальный цикл Ренкина, в котором осуществляется полная конденсация пара, для увеличения давления питательной воды используется насос и, кроме того, применяется перегретый пар, что позволяет повысить среднеинтегральную температуру. Процессы нагрева и охлаждения рабочего тела осуществляются при Р1 = РMAX = Const и P2 = PMIN = Const.
В ПТУ химическая энергия топлива при его сжигании превращается во внутреннюю энергию продуктов сгорания, которая затем в виде тепла передаются воде и пару в котле 1 (процесс 4 - 5 - 6) и пароперегревателе 2 (процесс 6 - 1), полученный пар, направляется в паровую турбину 3 (процесс 1 - 2), где и происходит преобразование теплоты в работу, а затем в электрическую энергию в электрогенераторе 4, отработанный пар поступает в конденсатор 5 (процесс 2 - 3), где отдает тепло охлаждающей воде.
Полученный конденсат, насосом 6, отправляется в питательный бак 7, откуда нагнетательным насосом 8 сжимается до Р1 = РMAX (процесс 3 - 4) и через водонагреватель 9 подается в котел 1 (см. на рисунке ниже.)
Термический КПД цикла Ренкина определяется в виде отношения полезной работы цикла ко всей затраченной в цикле теплоты:
(9.1)
Удельные расходы пара d0 и теплоты q0 определяются как:
(9.2)
(9.3)
Характеристики ПТУ, формулы (9.1 - 9.3), легко определяются с помощью h - S диаграммы.
Изменение электрического КПД конденсационных паротурбинных установок приведено на Рисунке
Сложность комплексной оценки информации по паротурбинным установкам заключается в их большом разнообразии как по типу (К, П, ПТ, Т, Р, ПР), так и по начальным параметрам (от 13 кг/см2 и ниже до 240 кг/см2). В теплофикационных ПТУ электрическая мощность, расход пара на турбину определяется величиной тепловой нагрузки в паре и в сетевой воде. Технико-экономические показатели каждой турбины должны определяться по диаграммам режимов с учётом всех особенностей её работы.
Заключение
Достоинства ПТУ:
- большой ресурс работы;
- надёжность;
- сравнительная простота эксплуатации;
- возможность использования различных топлив.
Недостатки:
- низкая эффективность;
- усложнение конструкции при повышении эффективности;
- необходимость водоподготовки;
- высокая стоимость.
Список литературы
1. Кириллов И.И., Иванов В.А., Кириллов А.И. Паровые турбины и паротурбинные установки. - Л.: Машиностроение. Ленингр. Отд-ние, 1978. - 276 с.
2. Быстрицкий Г.Ф. основы энергетики :Учебник.- М.:ИНФАР-М,2007.-278с.
3. Берман Л. Д. О теории теплообмена при конденсации пара в пучке горизонтальных труб. «Известия ВТИ», 1953, № 3.
4.Костюк А. Г.,Фролов В. В.,Булкин А. Е.,Трухний А. Д. Турбины тепловых и атомных электрических станций / Под ред. Костюка А. Г.,Фролова В. В. -- М.: Изд. МЭИ, 2001. -- 488 с.
5.Лесохин Е. И. Теплообменники-конденсаторы в процессах химической технологии, 1990, 289 с.
6. https://ru.wikipedia.org
7. http://text.tr200.biz/referat_fizika/?referat=152877
Размещено на Allbest.ru
Подобные документы
Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.
реферат [1,3 M], добавлен 27.05.2010Расчет паровой турбины, параметры основных элементов принципиальной схемы паротурбинной установки и предварительное построение теплового процесса расширения пара в турбине в h-s-диаграмме. Экономические показатели паротурбинной установки с регенерацией.
курсовая работа [2,4 M], добавлен 16.07.2013Выбор котла и турбины. Описание тепловой схемы паротурбинной установки. Методика и этапы определения параметров основных точек термодинамического цикла. Тепловой баланс паротурбинной установки, принципы расчета главных показателей и коэффициентов.
курсовая работа [895,5 K], добавлен 03.06.2014Способы повышения тепловой эффективности паросиловых установок. Основные характеристики паротурбинной установки. Построение диаграммы тепловых и эксергетических потоков в установке. Расчёт параметров точек идеального и действительного циклов ПТУ.
контрольная работа [52,0 K], добавлен 17.06.2011Техническая характеристика конденсационной турбины К-800-240-5. Подогреватели низкого и высокого давления. Турбина паровая приводная питательного насоса. Состав гидротехнических сооружений и их характеристики. Выбор механизмов системы пылеприготовления.
дипломная работа [2,4 M], добавлен 18.06.2013Назначение регенеративных подогревателей питательной воды низкого давления и подогревателей сетевой воды. Использование в качестве греющей среды пара промежуточных отборов турбин для снижения потерь теплоты в конденсаторах. Повышение термического КПД.
курсовая работа [886,6 K], добавлен 23.10.2013Конденсационная паровая турбина К-300-240-1. Тепловая схема турбоагрегата. Разбивка теплоперепада цилиндра низкого давления (ЦНД) по ступеням. Расчет ступеней ЦНД и построение треугольников скоростей. Техническо-экономические показатели турбоустановки.
курсовая работа [1,8 M], добавлен 04.04.2012Термодинамический расчет простейшей теплофикационной паротурбинной установки, необходимый при проектировании теплоэнергетических установок. Отображение процессов в соответствующих диаграммах, анализ различных способов оптимизации данной установки.
курсовая работа [2,2 M], добавлен 21.09.2014Характеристика паротурбинной установки как основного оборудования современных тепловых и атомных электростанций. Ее термодинамический цикл, процессы, происходящие в ходе работы. Пути увеличения КПД цикла ПТУ. Перспективы паротурбостроения в России.
реферат [1,3 M], добавлен 29.01.2012Конструкция турбины и ее технико-экономические показатели. Выбор оптимального значения степени парциальности. Число нерегулируемых ступеней давления и распределение теплового перепада между ними. Расчет осевого усилия, действующего на ротор турбины.
курсовая работа [831,4 K], добавлен 13.01.2016