Уравнение Бернулли

Уравнение Бернулли для струйки идеальной жидкости. Геометрическая и энергетическая интерпретация уравнения. Определение нивелирной, пьезометрической и скоростной высоты. Уравнение Бернулли для потока идеальной и реальной жидкости, его определение.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 29.06.2015
Размер файла 119,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция №6. Уравнение Бернулли

План

1. Уравнение Бернулли для струйки идеальной жидкости

2. Геометрическая интерпретация уравнения Бернулли

3. Энергетическая интерпретация уравнения Бернулли

4. Уравнение Бернулли для потока идеальной жидкости

5. Уравнение Бернулли для потока реальной жидкости

1. Уравнение Бернулли для струйки идеальной жидкости

Рассмотрим элементарную струйку идеальной жидкости при установившемся движении, в которой выделим два сечения 1-1 и 2-2. Площади живых сечений потока обозначим dщ1 и dщ2. Положение центров тяжести этих сечений относительно произвольно расположенной линии сравнения (нулевой линии) 0 - 0 характеризуется величинами z1 и z2. Давления и скорости жидкости в этих сечениях имеют значения P1, P2 и u1, u2 соответственно. бернулли идеальный жидкость нивелирный

Будем считать, что движение струйки жидкости происходит только под действием силы давления (внутреннее трение в жидкости отсутствует), а давление обладает свойствами статического и действует по нормали внутрь рассматриваемого объёма.

Размещено на http://www.allbest.ru/

За малый промежуток времени dt частицы жидкости из 1-1 переместятся в 1'-1' на расстояние, равное u1dt, а частицы из 2-2 в 2' - 2' на расстояние u2dt.

Согласно теореме кинетической энергии приращение энергии тела (в данном случае выделенного объёма жидкости) равно сумме работ всех действующих на него сил.

Работу в данном случае производят силы давления, действующие в рассматриваемых живых сечениях струйки 1-1 и 2-2, а также силы тяжести. Тогда работа сил давления в сечении 1-1 будет положительна, т.к. направление силы совпадает с направлением скорости струйки. Она будет равна произведению силы p11 на путь u1dt:

.

Работа сил давления в сечении 2-2 будет отрицательной, т.к. направление силы противоположно направлению скорости. Её значение

.

Полная работа, выполненная силами давления, примет вид:

.

Работа сил тяжести равна изменению потенциальной энергии положения выделенного объёма жидкости при перемещении из сечения 1-1 в сечение 2-2. С учётом условия неразрывности потока и несжимаемости жидкости выделенные элементарные объёмы будут равны и, следовательно, будут равны их веса dG:

.

При перетекании от сечения 1-1 в сечение 2-2 центр тяжести выделенного объёма переместится на разность высот (z1 - z2) и работа, произведённая силами тяжести, составит:

.

Проанализируем теперь изменение кинетической энергии рассматриваемого объёма элементарной струйки жидкости.

Приращение кинетической энергии выделенного объёма за dt равно разности его кинетических энергий в сечениях 1-1 и 2-2. Это приращение составит

.

Приравнивая приращение кинетической энергии сумме работ сил тяжести и сил давления, придём к виду:

.

Разделив обе части на вес dG, т.е. приведя уравнение к единичному весу, получим

.

После сокращения и преобразований придём к искомому виду

Если учесть, что сечения 1-1 и 2-2 выбраны произвольно, можно прийти к выводу, что сумма приведённых выше величин описывающих движение жидкости под действием сил давления и сил тяжести есть величина постоянная для элементарной струйки, т.е.

Таким образом, снова получено то же (ранее полученное интегрированием уравнений Эйлера) уравнение Бернулли для элементарной струйки невязкой жидкости при установившемся движении под действием сил тяжести.

2. Геометрическая интерпретация уравнения Бернулли

Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z. Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.

· Как и в гидростатике, величину Z называют нивелирной высотой.

· Второе слагаемое - носит название пьезометрическая высота. Эта величина соответствует высоте, на которую поднимется жидкость в пьезометре, если его установить в рассматриваемом сечении, под действием давления P.

· Сумма первых двух членов уравнения гидростатический напор.

· Третье слагаемое в уравнения Бернулли называется скоростной высотой или скоростным напором. Данную величину можно представить как высоту, на которую поднимется жидкость, начавшая двигаться вертикально со скорость u при отсутствии сопротивления движению.

· Сумму всех трёх членов (высот) называют гидродинамическим или полным напором и, как уже было сказано, обозначают буквой Н.

Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.

Значения - нивелирную, пьезометрическую и скоростную высоты можно определить для каждого сечения элементарной струйки жидкости. Геометрическое место точек, высоты которых равны , называется пьезометрической линией. Если к этим высотам добавить скоростные высоты, равные , то получится другая линия, которая называется гидродинамической или напорной линией.

Размещено на http://www.allbest.ru/

Из уравнения Бернулли для струйки невязкой жидкости (и графика) следует, что гидродинамический напор по длине струйки постоянен.

3. Энергетическая интерпретация уравнения Бернулли

Выше было получено уравнение Бернулли с использованием энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.

С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости.

Размещено на http://www.allbest.ru/

Здесь с энергетической точки зрения (в единицах энергии, Дж/кг) gz -- удельная потенциальная энергия положения; Р/ -- удельная потенциальная энергия давления; gz + Р/ -- удельная потенциальная энергия; u2/2 -- удельная кинетическая энергия; и -- скорость элементарной струйки идеальной жидкости.

Умножив все члены уравнения на удельный вес жидкости , получим

z - весовое давление, Па; P -- гидродинамическое давление, Па; и2 /2 -- динамическое давление Па; H -- полное давление, Па

4. Уравнение Бернулли для потока идеальной жидкости

Размещено на http://www.allbest.ru/

Поток идеальной жидкости, как указывалось ранее, можно представить совокупностью элементарных струек жидкости. Скорости по сечению потока неодинаковы, причём в середине потока скорости наибольшие, а к периферии они уменьшаются (струйная модель потока). Это означает, что различные струйки в одном сечении имеют различные значения кинетической энергии. Отсюда следует, что кинетическая энергия, посчитанная с использованием скоростей элементарных струек uS, и кинетическая энергия, посчитанная с использованием значения средней скорости потока V, будет иметь разные значения. Выясним, какова эта разница. Кинетическая энергия элементарной струйки равна:

где - масса жидкости плотностью , протекающей через живое сечение элементарной струйки со скоростью за время dt, равная:

.

Проинтегрировав выражение для , получим выражение для кинетической энергии потока идеальной жидкости .

.

Если принять, что t=1, получим:

.

Последняя формула определяет энергию потока с использованием скоростей элементарных струек uщ.

Если получить значение кинетической энергии потока с использованием значения средней скорости потока V , получим формулу:

,

где - масса жидкости плотностью , протекающей через живое сечение потока со скоростью за время t, равная:

.

После подстановки при t=1 окончательно получим:

.

Отношение и , равное:

.

Полученная величина б носит наименование коэффициента кинетической энергии или коэффициента Кориолиса. Смысл этого коэффициента заключается в отношении действительной кинетической энергии потока в определённом сечении к кинетической энергии в том же сечении потока, но при равномерном распределении скоростей. При равномерном распределении скоростей его значение равно единице, а при неравномерном - всегда больше единицы и для любого потока его значение находится в пределах от 1 до 2 и более.

Учитывая коэффициент кинетической энергии, приведём уравнение Бернулли для потока идеальной жидкости, которое примет вид:

Надо учесть, что в общем случае в разных сечениях потока коэффициент б будет иметь различные значения.

5. Уравнение Бернулли для потока реальной жидкости

В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается. Т.е. напор потока Hпотока в направлении движения потока становится меньше. Если рассмотреть два соседних сечения 1-1 и 2-2, то потери гидродинамического напора Дh составят:

,

где H1-1- напор в первом сечении потока жидкости,

H2-2 - напор во втором сечении потока,

?h - потерянный напор - энергия, потерянная каждой единицей веса движущейся жидкости на преодоление сопротивлений на пути потока от сечения 1-1 до сечения 2-2.

С учётом потерь энергии уравнение Бернулли для потока реальной жидкости будет выглядеть

Индексами 1 и 2 обозначены характеристики потока в сечениях 1-1 и 2-2. Если учесть, что характеристики потока V и б зависят от геометрии потока, которая для напорных потоков определяется геометрией трубопровода, понятно, что потери энергии (напора) в разных трубопроводах будут изменяться неодинаково. Показателем изменения напора потока является гидравлический уклон I, который характеризует потери напора на единице длины потока. Физический смысл гидравлического уклона - интенсивность рассеяния энергии по длине потока. Другими словами, величина I показывает, как быстро трубопровод поглощает энергию потока, протекающего в нём

.

Изменение энергии по длине потока удобно проследить на графиках. Из уравнения Бернулли для потока реальной жидкости (закона сохранения энергии) видно, что гидродинамическая линия для потока реальной жидкости (с одним источником энергии) всегда ниспадающая. То же справедливо и для пьезометрической линии, но только в случае равномерного движения, когда скоростной напор а уменьшение напора происходит только за счёт изменения потенциальной энергии потока, главным образом за счёт уменьшения давления P.

Пьезометрическим уклоном называют изменение удельной потенциальной энергии жидкости вдоль потока, приходящееся на единицу его длины.

Если гидравлический уклон всегда положителен, то пьезометрический может быть и положительным, и отрицательным. При равномерном движении жидкости, когда скорость по длине потока не изменяется, скоростной напор вдоль потока v2 / (2g) = const. Следовательно, пьезометрическая линия параллельна энергетической, и пьезометрический уклон равен гидравлическому.

Изменение удельной потенциальной энергии положения вдоль потока жидкости, приходящееся на единицу длины, называют геометрическим уклоном i и определяют по формуле

где l -- расстояние между сечениями потока.

Сформулируем два условия применимости к потоку жидкости уравнения Бернулли: 1) движение жидкости должно быть установившимся; 2) движение жидкости в сечениях 1--2, 2--2 и 3--3,cоединяемых уравнением Бернулли, должно быть параллельно струйным или плавноизменяющимся, в промежутке же между сечениями 1--1, 2--2 и 3--3 движение жидкости может быть и резко меняющимся.

Hа применении уравнения Бернулли основан принцип действия приборов для измерения скоростей и расходов жидкости. Одним из таких приборов является расходомер Вентури, состоящий из двух конических отрезков трубы, узкие концы которых соединены коротким цилиндрическим патрубком длиной менее 10 диаметров трубопровода (отношение диаметра конфузора и диффузора соответственно d/D=:0,3...0,7). Принцип работы расходомера Вентури базируется на уравнении Бернулли и уравнении неразрывности потока, а также на том, что перепад давлений на диафрагме, измеряемый пьезометром либо дифманометром пропорционален квадрату протекающего через нее расхода

Для определения местных скоростей при плавноизменяющемся безнапорном движении применяют метод Пито. Трубку, нижний конец которой изогнут под прямым углом, опускают навстречу потоку, и жидкость в трубке начинает подниматься над свободной поверхностью, где давление равно атмосферному, на высоту .

При определении местных скоростей в напорном потоке используют систему из двух трубок, одна из которых представляет собой обычный пьезометр, показывающий напор Р/, а другая,только что описанная, измеряет величину напора

Разность уровней в обеих трубках h представляет собой скоростной напор

Местные скорости находят с помощью трубки Пито по формуле

где k- поправочный коэффициент, определяемый для каждой трубки опытным путем

Размещено на Allbest.ru


Подобные документы

  • Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.

    контрольная работа [169,0 K], добавлен 01.06.2015

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

  • Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

    презентация [224,8 K], добавлен 14.10.2013

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Поле вектора скорости: определение. Теорема о неразрывности струн. Уравнение Бернулли. Стационарное течение несжимаемой идеальной жидкости. Полная энергия рассматриваемого объема жидкости. Истечение жидкости из отверстия.

    реферат [1,8 M], добавлен 18.06.2007

  • Создание модели движения жидкости по сложному трубопроводу с параллельным соединением труб и элементов. Уравнения механики жидкости и газа для подсчета потерь на трение. Определение числа Рейнольдса. Система уравнений Бернулли в дифференциальной форме.

    контрольная работа [383,5 K], добавлен 28.10.2014

  • Описание и аналитические исследования гидродинамических процессов. Дифференциальные уравнения движения Эйлера. Уравнение Бернулли и гидродинамическое подобие потоков. Инженерно-технологический расчет и принцип действия паростуйного эжектора типа ЭП-3-600.

    курсовая работа [1,5 M], добавлен 28.04.2015

  • Физические свойства жидкости и уравнение гидростатики. Пьезометрическая высота и вакуум. Приборы для измерения давления. Давление жидкости на плоскую наклонную стенку и цилиндрическую поверхность. Уравнение Бернулли и гидравлические сопротивления.

    курсовая работа [1,2 M], добавлен 30.11.2014

  • Построение эпюры гидростатического давления жидкости на стенку, к которой прикреплена крышка. Расчет расхода жидкости, вытекающей через насадок из резервуара. Применение уравнения Д. Бернулли в гидродинамике. Выбор поправочного коэффициента Кориолиса.

    контрольная работа [1,2 M], добавлен 24.03.2012

  • Элементарная струйка и поток жидкости. Уравнение неразрывности движения жидкости. Примеры применения уравнения Бернулли, двигатель Флетнера (турбопарус). Критическое число Рейнольдса и формула Дарси-Вейсбаха. Зависимость потерь по длине от расхода.

    презентация [392,0 K], добавлен 29.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.