Критерии подобия

Применение моделирования в проектировании различных гидросистем, гидравлических и газовых систем химических и нефтехимических предприятий. Основы теории подобия, геометрическое и динамическое подобие. Критерии подобия для потоков несжимаемой жидкости.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 27.06.2015
Размер файла 72,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция 14. Критерии подобия

Вступление

В процессе проектирования различных гидросистем, трубопроводов, гидротехнических сооружений, гидравлических и газовых систем химических и нефтехимических предприятий нередко возникает необходимость не только математического, но и натурного моделирования. В таком случае необходимо, чтобы работа гидросистемы действующей модели соответствовала функционированию реального объекта. Это означает, что различные характеристики потоков жидкости, которые имеют место в модели и в реальной системе, должны описываться одинаковыми закономерностями, хотя их численные значения могут существенно различаться. В натурной модели они меньше (как правило) или больше (встречается реже), чем в действительности. Для этого необходимо иметь критерии, которые позволяли бы «масштабировать» реальную систему. Эти критерии устанавливаются в теории подобия потоков жидкости.

Основы теории подобия, геометрическое и динамическое подобие

Гидродинамическое подобие - это подобие потоков несжимаемой жидкости, включающее в себя подобие геометрическое, кинематическое и динамическое.

Из геометрии известно, что геометрическое подобие означает пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки жидкости, Таким образом, в гидравлике геометрическое подобие означает подобие русел или трубопроводов, по которым течёт жидкость.

Размещено на http://www.allbest.ru/

Кинематическое подобие это подобие линий тока и пропорциональность сходственных скоростей. Это значит, что для кинематического подобия потоков требуется соблюдение геометрического подобия.

Динамическое подобие заключается в пропорциональности сил, действующих на сходственные элементы кинематически и геометрически подобных потоков, и равенство углов, характеризующих направление действия этих сил.

В потоках жидкостей (в нашем случае в трубопроводах, в гидромашинах и т.д.) обычно действуют разные силы - силы давления, силы вязкого трения, силы тяжести, инерционные силы. Соблюдение пропорциональности всех сил, действующих в потоке, означает полное гидродинамическое подобие.

На практике полное гидродинамическое подобие достигается редко, поэтому обычно приходится ограничиваться частичным (неполным) гидродинамическим подобием, при котором имеется пропорциональность лишь основных сил.

Записывается подобие следующим образом. Например, пропорциональность сил давления Р и сил трения Т, действующих в потоках I и II, можно записать в виде

.

Критерии подобия для потоков несжимаемой жидкости

подобие геометрический динамический жидкость

Критерий подобия Ньютона.

В подобных потоках силы, с которыми поток воздействует на препятствия - твердые стенки, лопасти гидромашин, обтекаемые потоком тела, и другие преграды, должны быть пропорциональны. Этими силами являются силы инерции движущейся жидкости, которые пропорциональны произведению динамического давления на преграду при площади воздействия S:

Рассмотрим, как поток жидкости наталкивается на безграничную стенку, установленную нормально к нему, и в результате, растекаясь по ней, меняет свое направление на 90°. На основании теоремы механики о количестве движения секундный импульс силы , с которой поток действует на стенку, равен:

Размещено на http://www.allbest.ru/

,

где - плотность жидкости,

- секундный расход жидкости,

- средняя скорость жидкости,

s- площадь воздействия струи на преграду.

Это и есть сила воздействия на преграду. Для подобных потоков I и II должно выполняться равенство

,

Или

.

Последнее отношение, одинаковое для подобных потоков, называется числом Ньютона и обозначается Ne.

Критерий подобия Эйлера.

Вначале рассмотрим наиболее простой случай - напорное движение идеальной жидкости, т. е. такое движение, при котором отсутствуют силы вязкости. Для этого случая уравнение Бернулли для сечений 1-1 и 2-2 будет иметь вид:

.

Из условия неразрывности потока расходы в сечениях 1-1 и 2-2 с площадями соответственно и одинаковы, а это значит, что

,

Откуда

.

Подставив последнее соотношение в уравнение Бернулли, после переноса членов получим:

.

После очевидных преобразований и сокращений придём к виду

.

Если два потока геометрически подобны, то правая часть уравнения имеет одно и то же значение, следовательно, левая часть тоже одинакова, т.е. разности давлений в сечениях 1-1 и 2-2 пропорциональны динамическим давлениям:

.

Таким образом, при напорном движении идеальной несжимаемой жидкости для обеспечения гидродинамического подобия достаточно одного геометрического подобия. Безразмерная величина, представляющая собой отношение разности давлений к динамическому давлению (или разности пьезометрических высот к скоростной высоте), называется коэффициентом давления или числом Эйлера и обозначается Eu.

В случае напорного движения в приведённых уравнениях под можно понимать полное давление (на жидкость действует также сила тяжести, но в напорных потоках ее действие проявляется через давление, т. е. оно сводится лишь к соответствующему изменению давления за счёт глубины потока), т.к. при высоких давлениях величина давления, зависящая от глубины потока, несоизмеримо мала, и величина гидростатического напора практически полностью определяется избыточным давлением. Следовательно, для Eu можно записать:

,

где - разность статических напоров.

Критерий подобия Рейнольдса.

Посмотрим, какому условию должны удовлетворять те же геометрически и кинематически подобные потоки для того, чтобы было обеспечено их гидродинамическое подобие при наличии сил вязкости, а, следовательно, и потерь энергии, т.е. при каком условии числа Eu будут одинаковыми для этих потоков.

Уравнение Бернулли для этого случая примет вид:

,

или по аналогии с предыдущими рассуждениями, учтя, что

,

можно написать

Как видно из последнего уравнения, числа Eu будут иметь одинаковые значения для рассматриваемых потоков, а сами потоки будут подобны друг другу гидродинамически при условии равенства коэффициентов сопротивления (равенство коэффициентов и для сходственных сечений двух потоков следует из их кинематического подобия). Таким образом, коэффициенты сопротивлений в подобных потоках должны быть одинаковыми, а это значит, что потери напора для сходственных участков пропорциональны скоростным напорам.

.

Рассмотрим очень важный в гидравлике случай движения жидкости - движение с трением в цилиндрической трубе, для которого коэффициент трения можно описать формулой

.

Для геометрически подобных потоков отношение одинаково, следовательно, условием гидродинамического подобия в данном случае является одинаковое значение для этих потоков коэффициента . Он выражается через напряжение трения на стенке и динамическое давление, как было установлено ранее, следующим образом:

.

Следовательно, для двух подобных потоков I и II можно записать

,

т. е. напряжения трения пропорциональны динамическим давлениям.

Учитывая закон трения Ньютона и тот факт, что в последних уравнениях , предыдущие отношения, равные k, можно выразить

где индекс у = 0 означает, что производная взята при у = 0, т. е. у стенки трубы. При этом заметим, что закон трения Ньютона применим лишь при ламинарном течении. Однако, как было показано выше, при турбулентном течении в трубах вблизи стенок образуется тонкий ламинарный слой, внутри которого справедлив закон трения Ньютона. Поэтому напряжение трения на стенке может определяться по этому закону также и при турбулентном течении.

После умножения и деления на диаметр трубы d и перегруппировки множителей получим:

Здесь буквой С обозначено выражение в квадратных скобках, представляющее собой безразмерный градиент скорости вблизи стенки.

Для кинематически подобных потоков величина C одинакова, поэтому после сокращения на С условие динамического подобия потоков перепишем в виде

или, переходя к обратным величинам

.

В этом заключается критерий подобия Рейнольдса, который можно сформулировать следующим образом: для гидродинамического подобия геометрически и кинематически подобных потоков с учетом сил вязкости требуется равенство чисел Рейнольдса, подсчитанных для любой пары сходственных сечений этих потоков.

Критерий подобия Фруда.

В тех случаях, когда движение жидкости является безнапорным и происходит под действием разности нивелирных высот, условие подобия потоков описывается иначе, с помощью другого критерия подобия - числа Фруда. Этот критерий учитывает пропорциональность в отношениях сил инерции к силам тяжести. Однако для подавляющего большинства интересующих нас задач в области машиностроения этот критерий не имеет значения и рассматриваться не будет.

Заключение о подобии напорных потоков.

Итак, в подобных напорных потоках имеем равенство безразмерных коэффициентов и чисел б, ж, л, Eu, Re, Ne. Изменение Re означает, что меняется соотношение основных сил в потоке, в связи с чем указанные коэффициенты могут также несколько меняться. Поэтому все эти коэффициенты следует рассматривать как функции Re (хотя в некоторых интервалах Re они могут оставаться постоянными).

Пересчет характеристик насоса.

Движение жидкости в проточной части лопастных насосов имеет достаточно сложный характер, поэтому при разработке и создании современных гидромашин необходимо проводить испытания в лабораторных и натурных условиях. Такие исследования опираются на использование общей теории гидромеханического подобия движения реальной жидкости.

Геометрическое подобие, как известно из геометрии, представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т. е. подобие русл или каналов. При моделировании два насоса могут считаться подобными, если линейные размеры одного из них (модель) в одинаковое число раз меньше соответствующих размеров другого:

При геометрическом подобии все углы постоянны. Для полного геометрического подобия необходимо, чтобы относительная шероховатость /D и относительные зазоры / D) были одинаковы для обоих насосов.

Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей. Траектории движения должны быть геометрически подобны:

Динамическое подобие - это пропорциональность сил, действующих на сходственные объемы в кинематически подобных потоках, и равенство углов, характеризующих направление этих сил. Динамическое подобие сводится к равенству чисел, или критериев Эйлера, Рейнольдса, Фруда:

две l - характерный линейный размер; t - время.

Гидромеханическое подобие основывается на соблюдении геометрического, кинематического и динамического подобия.

Критерии будут определяющими тогда, когда они выражены через исходные величины, задаваемые в начальных и граничных условиях.

В практике моделирования гидромашин большое значение имеет критерий Эйлера:

Пересчет характеристик насоса при изменении частоты вращения и диаметра рабочего колеса.

Для пересчета характеристик воспользуемся формулами закона пропорциональности:

при наружном диаметре рабочего колеса D2 = const.

Пересчет осуществляется следующим образом: задают ряд значений расхода Q, по имеющейся характеристике находят соответствующие каждому значению Q напор Н и КПД. Подставляют найденные значения Q1, п1 и H в уравнение и получают соответствующие значения Q2, h2 и H2, т. е. координаты точек новой характеристики насоса при частоте вращения n2. Наносят точки на график и получают искомую характеристику насоса при n2.

Если дана зависимость Н от Q при n1 = const., то аналогичная кривая для n2 = const может быть получена пересчетом абсцисс точек (подач) первой кривой пропорционально отношениям частот вращения, а ординат (напоров) - пропорционально квадрату этого отношения. Таким путем можно получить целую серию характеристик одного и того же насоса для ряда разных частот вращения n2, n3, n4 и т. д.

На практике, если подобрать центробежный насос по каталогу или с применением закона динамического подобия не удается, прибегают к обточке его рабочего колеса. Практика и проведенные испытания показали, что при допустимом уменьшении диаметра колеса КПД насоса снижается мало, но довольно сильно изменяются подача и напор. Необходимую степень обточки колеса определяют таким образом, чтобы удовлетворить расчетным значениям подачи и напора. Максимальная степень обточки колеса центробежного насоса зависит от быстроходности и возможна в следующих пределах: для ns = 60… 120 - на 20...15 %, для ns = 120...200 - на 15...10, для ns = 200...300 - на 10...5 %.

Размещено на Allbest.ru


Подобные документы

  • Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.

    реферат [2,8 M], добавлен 06.06.2011

  • Основы теории подобия. Особенности физического моделирования. Сущность метода обобщенных переменных или теории подобия. Анализ единиц измерения. Основные виды подобия: геометрическое, временное, физических величин, начальных и граничных условий.

    презентация [81,3 K], добавлен 29.09.2013

  • Условия подобия процессов конвективного теплообмена. Безразмерное дифференциальное уравнение теплоотдачи. Приведение к безразмерному виду уравнения движения. Числа подобия Рейнольдса, Грасгофа, Эйлера. Общий вид решений конвективной теплоотдачи.

    презентация [155,3 K], добавлен 18.10.2013

  • Жидкости, обладающие свойством сплошности и уравнение неразрывности. Обобщенный закон трения, сопротивление смещению частиц относительно других в жидкостях и газах. Основы теории подобия, получение критериев подобия методом масштабных преобразований.

    презентация [281,4 K], добавлен 14.10.2013

  • Описание процесса передачи тепла от нагретого твердого тела к газообразному теплоносителю. Определение конвективного коэффициента теплоотдачи экспериментальным методом и с помощью теории подобия. Определение чисел подобия Нуссельта, Грасгофа и Прандтля.

    реферат [87,8 K], добавлен 02.02.2012

  • Основная идея использования метода анализа размерностей. Понятие о безразмерных величинах. Основные понятия теории подобия. Метод масштабных преобразований. Первая теорема Ньютона. Критерий Нуссельта, Фурье, Эйлера. Подобие нестационарных процессов.

    реферат [570,2 K], добавлен 23.12.2014

  • Гидродинамическая и тепловая стабилизация потока жидкости в трубе. Уравнение подобия для конвективной теплоотдачи. Теплоотдача к жидкости в кольцевом канале. Критические значения чисел Рейнольдса для изогнутых труб. Поправка на шероховатость трубы.

    презентация [162,4 K], добавлен 18.10.2013

  • Изучение понятия теплоотдачи, теплообмена между потоками жидкости или газа и поверхностью твердого тела. Конвективный перенос теплоты. Анализ основного закона конвективного теплообмена. Уравнение Ньютона-Рихмана. Получение критериев теплового подобия.

    презентация [189,7 K], добавлен 09.11.2014

  • Тепловой и гидродинамический пограничные слои при свободной конвекции. Критерии подобия (Грасгофа, Рэлея и Архимеда) и визуализация свободноконвективного теплообмена. Свободная конвекция в ограниченном пространстве и в горизонтальных прослойках.

    презентация [366,8 K], добавлен 15.03.2014

  • Сущность и дифференциальные уравнения конвективного теплообмена. Критерии теплового подобия. Определение коэффициента теплоотдачи. Теплопередача при изменении агрегатного состояния теплоносителей (кипении и конденсации). Расчет ленточного конвейера.

    курсовая работа [267,9 K], добавлен 31.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.