Кинематика течений жидкости

Определение понятия кинематики, ее назначение и основные величины. Подходы к описанию движения сплошной среды, переменные Эйлера и Лагранжа. Характеристика траектории жидких частиц и линии тока, их параметры. Краткие сведения о кинематике вихрей.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 23.06.2015
Размер файла 28,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КИНЕМАТИКА ТЕЧЕНИЙ ЖИДКОСТИ

Содержание

1. Два подхода к описанию движения сплошной среды. Переменные Эйлера и Лагранжа

2. Траектория. Линия (поверхность) тока

3. Кинематика вихрей. Циркуляция скорости

Введение

Кинематикой называется раздел механики, изучающий движение материальных тел в пространстве с геометрической точки зрения без выяснения причин его возникновения. Все кинематические величины, характеризующие движение твёрдого тела и движение отдельных точек (расстояния, скорости, ускорения и т.д.), рассматриваются как функции времени.

1. Два подхода к описанию движения сплошной среды. Переменные Эйлера и Лагранжа

Для описания движения сплошной среды возможны два подхода. Один из них называется лагранжевым, другой - эйлеровым.

Лагранжев метод описания движения относится к типу отсчётных. В некоторый (начальный) момент времени t0 каждая из жидких частиц маркируется путём присвоения ей значения координат в данный момент времени.

В трёхмерном пространстве введём обозначения

.

В дальнейшем прослеживается движение каждой частицы индивидуально. При таком подходе положение частицы в каждый момент времени будет зависеть от параметров a, b, c и t, которые называются переменными Лагранжа. Можно записать, что вектор положения жидкой частицы равен

.

Скорость жидкой частицы выразится через производную радиус-вектора

,

а ускорение через производную скорости

.

В последних двух формулах при дифференцировании параметры a, b, c являются постоянными, и являются только функционалами времени и в этом случае энергии дифференцирования и тождественны.

Эйлеров метод описания движения относится к типу пространственных. В каждой точке пространства с координатами x,y,z изучаются параметры движения в различные моменты времени t. Таким образом, скорость жидкости в различных точках пространства должна быть функцией четырёх переменных x, y, z, t , называемых переменными Эйлера,

,

а её дифференциал

.

В движущейся среде приращения не являются независимыми, а соответственно равны

.

Поэтому справедливо равенство

,

где .

Это означает, что полное ускорение индивидуальной жидкой частицы, находящейся в момент времени t в точке пространства с координатами x,y,z, состоит из двух частей: локального ускорения , обусловленного изменением скорости во времени в данной точке, и конвективного ускорения, обусловленного неоднородностью поля скоростей в окрестности данной точки и связанного с этим обстоятельством конвективного переноса.

Производная носит название индивидуальной или субстанциональной производной.

Если =0, поле скоростей стационарно, однако это ещё не означает, что в жидкости отсутствуют ускорения. Стационарность или нестационарность поля скоростей зависит от выбора системы координат.

Если = 0, то поле скоростей однородно.

2. Траектория. Линия (поверхность) тока

Траекторией жидкой частицы называется геометрическое место точек пространства, через которое частица последовательно проходит во времени.

В переменных Лагранжа траекторию определяет уравнение

.

Если задача решена в переменных Эйлера, то известно поле скоростей и траекторию следует находить путём решения дифференциального уравнения

,

с начальным условием: при .

Линией тока называется линия, в каждой точке которой в каждый момент времени скорость направлена по касательной к этой линии.

В векторной форме условие тангенциальности можно записать в виде

.

В проекциях на оси координат получим систему уравнений

,

которую можно переписать также в виде

.

Время здесь является фиксированным параметром.

В стационарном случае траектория и линия тока совпадают. В нестационарных течениях траектории отличаются от линий тока.

Поверхность тока определяется как поверхность, в каждой точке которой в фиксированный момент времени вектор скорости лежит в касательной плоскости. Такую поверхность можно образовать, например, путём проведения через замкнутую кривую непрерывной совокупности линий тока. В этом случае говорят о трубке тока.

3. Кинематика вихрей

Рис. 10

Рассмотрим вектор вихря скорости, который определяется соотношением называемый иногда вектором завихренности.

Линии в потоке жидкости, в каждой точке которой вектор вихря скорости является касательным к данной линии, называются вихревыми линиями.

Обобщение данного понятия на поверхность (вектор вихря в каждой точке поверхности должен лежать в касательной плоскости) даёт понятие вихревой поверхности или вихревого слоя.

Совокупность вихревых линий, проведенных через замкнутый контур, образует вихревую поверхность, а жидкость, заключённая внутри вихревой поверхности, - вихревую трубку.

Интенсивность вихревой трубки удобнее выразить через циркуляцию вектора скорости .

В общем случае Г определяется как

,

кинематика течение жидкий ток

где - вектор перемещения вдоль произвольного контура, соединяющего точки А и В.

Если контур замкнут, то

.

Размещено на Allbest.ru


Подобные документы

  • Методы изучения движения жидкости. Основная теорема кинематики (Гельмгольца). Уравнение движения сплошной среды в напряжениях. Понятия и определения потенциальных течений. Моделирование гидрогазодинамических явлений, ламинарное и турбулентное движение.

    шпаргалка [782,6 K], добавлен 04.09.2010

  • Анализ ошибок и знаменитых опытов, в ходе которых была открыта кинематика. Фундаментальные открытия Аристотеля. Учения Галилео Галилея. Опыт на Пизанской башне. Вложения Пьера Вариньона в учения о кинематике. Ученые, выделившие отдельный раздел механики.

    реферат [143,6 K], добавлен 23.12.2014

  • Основные положения и постулаты кинематики – раздела теоретической механики. Теоретические основы: определения, формулы, уравнения движения, скорости и ускорения точки, траектории; практические примеры в виде решения наиболее типичных задач кинематики.

    методичка [898,8 K], добавлен 26.01.2011

  • История развития кинематики как науки. Основные понятия этого раздела физики. Сущность материальной точки, способы задания ее движения. Описание частных случаев движения в зависимости от ускорения. Формулы равномерного и равноускоренного движения.

    презентация [1,4 M], добавлен 03.04.2014

  • Характеристика движения объекта в пространстве. Анализ естественного, векторного и координатного способов задания движения точки. Закон движения точки по траектории. Годограф скорости. Определение уравнения движения и траектории точки колеса электровоза.

    презентация [391,9 K], добавлен 08.12.2013

  • Кинематика точки. Способы задания движения. Определение понятия скорости точки и методы ее нахождения. Выявление ее значения при естественном способе задания равномерного движения. Способ графического представления скорости в декартовой системе координат.

    презентация [2,3 M], добавлен 24.10.2013

  • Построение траектории движения точки. Определение скорости и ускорения точки в зависимости от времени. Расчет положения точки и ее кинематических характеристик. Радиус кривизны траектории. Направленность вектора по отношению к оси, его ускорение.

    задача [27,6 K], добавлен 12.10.2014

  • Модели сплошной среды–идеальная и вязкая жидкости. Уравнение Навье-Стокса. Силы, действующие в атмосфере. Уравнение движения свободной атмосферы. Геострофический ветер. Градиентный ветер. Циркуляция атмосферы. Образование волновых движений в атмосфере.

    реферат [167,4 K], добавлен 28.12.2007

  • Построение траектории движения тела, отметив на ней положение точки М в начальный и заданный момент времени. Расчет радиуса кривизны траектории. Определение угловых скоростей всех колес механизма и линейных скоростей точек соприкосновения колес.

    контрольная работа [177,7 K], добавлен 21.05.2015

  • Понятие кинематики как раздела механики, в котором изучается движения точки или тела без учета причин, вызывающих или изменяющих его, т.е. без учета действующих на них сил. Способы задания движения и ускорения материальной точки, направления осей.

    презентация [1,5 M], добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.