Свойства сверхпроводников и диэлектриков
Понятие сверхпроводимости и влияние на нее температуры, нулевое электрическое сопротивление и теория Гинзбурга-Ландау, сущность вихрей Абрикосова. Применение сверхпроводников и диэлектрические свойства изоляторов, механизмы поляризации кристаллов.
Рубрика | Физика и энергетика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 28.05.2015 |
Размер файла | 17,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
1. Сверхпроводимость: нулевое электрическое сопротивление и эффект Мейсснера
сверхпроводник диэлектрик поляризация изолятор
Сверхпроводиммость -- свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость -- квантовое явление.
Эффект Мейсснера -- полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.
При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.
Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток.
Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.
Диамагнемтики -- вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны
2. Сверхпроводники I и II рода
Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный -- сверхпроводниками второго рода.
У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей вихрей Абрикосова. Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода.
3. Теория Гинзбурга-Ландау
Одним из самых важных следствий теории Гинзбурга -- Ландау являлось нахождение вихрей Абрикосова в сверхпроводниках II типа, находящихся в сильном магнитном поле.
Коэффициенты в уравнение Гинзбурга -- Ландау были в 1959 году вычислены Л.П. Горьковым на основе микроскопической теории сверхпроводимости.
4. Вихри Абрикосова
Вихрь Абрикосова -- вихрь сверхпроводящего тока (сверхтока), циркулирующий вокруг нормального (несверхпроводящего) ядра (нити вихря), индуцирующий магнитное поле с магнитным потоком, эквивалентным кванту магнитного потока
А.А. Абрикосовым в 1957 году в своей работе «О магнитных свойствах сверхпроводников второй группы» было теоретически показано, что проникновение магнитного поля в сверхпроводник 2 рода происходит в виде квантованных вихревых нитей (такая система энергетически «выгодна»). Каждая такая нить (вихрь) имеет нормальную (несверхпроводящую) сердцевину с радиусом порядка длины когерентности сверхпроводника о. Вокруг этого нормального цилиндра в области с радиусом порядка глубины проникновения магнитного поля л течет вихревой незатухающий ток куперовских пар (сверхток), ориентированный так, что создаваемое им магнитное поле направлено вдоль нормальной сердцевины, то есть совпадает с направлением внешнего магнитного поля. При этом каждый вихрь несет один квант потока
5. Эффекты Джозефсона
Эффект Джозефсона -- явление протекания сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника. Такой ток называют джозефсоновским током, а такое соединение сверхпроводников -- джозефсоновским контактом. В первоначальной работе Джозефсона предполагалось, что толщина диэлектрического слоя много меньше длины сверхпроводящей когерентности, но последующие исследования показали, что эффект сохраняется и на гораздо больших толщинах.
6. Высокотемпературные сверхпроводники
Высокотемпературная сверхпроводимость (ВТСП) -- сверхпроводимость при относительно больших температурах. Исторически граничной величиной является температура в 30 К, однако ряд авторов под ВТСП подразумевает сверхпроводники с критической температурой выше точки кипения азота (77 К или ?196 °C).
Как правило, реализуется в семействе материалов сверхпроводящих керамик с общей структурной особенностью - относительно хорошо разделёнными медно-кислородными плоскостями. Их также называют сверхпроводниками на основе купратов. Температура сверхпроводящего перехода, которая может быть достигнута в некоторых составах в этом семействе, является самой высокой среди всех известных сверхпроводников.
7. Применение сверхпроводников
К сожалению, практически все высокотемпературные сверхпроводники не технологичны (хрупки, не обладают стабильностью свойств и т. д.), вследствие чего в технике до сих пор применяются в основном сверхпроводники на основе сплавов ниобия.
Явление сверхпроводимости используется для получения сильных магнитных полей (например, в циклотронах), поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля.
Существуют детекторы фотонов на сверхпроводниках.
Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти
Отсутствие потерь на нагревание при прохождении постоянного тока через сверхпроводник делает привлекательным применение сверхпроводящих кабелей для доставки электричества, так как один тонкий подземный кабель способен передавать мощность, которая традиционным методом требует создания цепи линии электропередач с несколькими кабелями много большей толщины.
8. Диэлектрические свойства изоляторов, локальное поле и диэлектрическая проницаемость
Диэлектрик (изолятор) -- вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см?3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик -- вещество с шириной запрещённой зоны больше 3 эВ.
Условно к проводникам относят материалы с удельным электрическим сопротивлением с 10?5 Ом·м, а к диэлектрикам -- материалы, у которых с > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10?8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10?5--108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам.
В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков -- возбуждённым.
Локальное поле - поле действующее на конкретную данную молекулу диэлектрика:
Диэлектримческая проницамемость среды абсолютная -- коэффициент, входящий в математическую запись закона Кулона и уравнение связи векторов электрической индукции и напряженности электрического поля
Диэлектримческая проницамемость среды относительная -- физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая, во сколько раз сила взаимодействия двух электрических зарядов в этой среде меньше, чем в вакууме.
9. Механизмы поляризации кристаллов
Появление на поверхности диэлектрика зарядов во внешнем поле называется поляризацией диэлектрика, а сами заряды - поляризационными.
Ионная поляризация наблюдается в твердых ионных кристаллах. Кристаллическая решетка таких кристаллов состоит из подрешетки положительных ионов и подрешетки отрицательных ионов, «вставленных» одна в другую.
Под действием электрического поля, к примеру, в кристалле NaCl, подрешетка ионов Na+ будет смещаться по полю, а подрешетка ионов Cl- против поля, и на поверхности кристалла появятся поляризационные заряды.
10. Пироэлектрики и сегнетоэлектрики
Пироэлемктрики (от др.-греч. р?с -- огонь) -- кристаллические диэлектрики, обладающие спонтанной (самопроизвольной) поляризацией, то есть поляризацией в отсутствие внешних воздействий.
Изменение спонтанной поляризации и появление электрического поля в пироэлектриках может происходить не только при изменении температуры, но и при деформировании. Ниже точки Кюри пироэлектрики являются сегнетоэлектриками.
11. Температура Кюри
температура Кюри, -- температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной -- в ферромагнетиках, электрической -- в сегнетоэлектриках, кристаллохимической -- в упорядоченных сплавах).
12. Фазовые переходы первого и второго рода
Фазой называется термодинамически равновесное состояние вещества, отличающееся от других возможных равновесных состояний того же вещества. Если, например, в закрытом сосуде находится вода, то эта система является двухфазной: жидкая фаза - вода и газообразная фаза - смесь воздуха с водяными парами. Если в воду бросить кусочки льда, то эта система станет трёхфазной, в которой лёд является твёрдой фазой.
Фазовые переходы первого рода характеризуются постоянством температуры, изменениями энтропии и объёма. Объяснение этому можно дать следующим образом. Например, при плавлении телу нужно сообщить некоторое количество теплоты, чтобы вызвать разрушение кристаллической решётки. Подводимая при плавлении теплота идёт не на нагрев тела, а на разрыв межатомных связей, поэтому плавление протекает при постоянной температуре.
Фазовые переходы, не связанные с поглощением или выделением теплоты и изменением объёма, называются фазовыми переходами второго рода. Эти переходы характеризуются постоянством объёма и энтропии, но скачкообразным изменением теплоёмкости.
Фазовые переходы второго рода связаны с изменением симметрии: выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода. Примерами фазовых переходов второго рода являются: переход ферромагнитных веществ (железа, никеля) при определённых давлении и температуре в парамагнитное состояние; переход металлов и некоторых сплавов при температуре, близкой к 0К, в сверхпроводящее состояние, характеризуемое скачкообразным уменьшением электрического сопротивления до нуля; превращение обыкновенного жидкого гелия при Т=2,9К в другую жидкую модификацию, обладающую свойствами сверхтекучести.
13. Использование сегнетоэлектриков в микроэлектронике
В микроэлектронике С. пока не нашли столь обширных применений, как полупроводники, поскольку электронные устройства на С. плохо поддаются интеграции. Однако решены некоторые технологические проблемы, связанные с получением тонких плёнок С. разного состава (в т. ч. PZT) со свойствами, близкими к монокристаллам.
Переключение поляризации в таких плёнках осуществляется малыми электрического напряжениями; плёнки могут наноситься на полупроводниковые подложки. Системы оперативной памяти на основе тонких сегнетоэлектрических плёнок перспективны.
В устройствах интегральной оптики используются волноводные каналы на поверхности С., которые создаются путём диффузного легирования кристаллов, гл. обр. ниобата и танталата лития.
Размещено на Allbest.ru
Подобные документы
Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.
курсовая работа [60,1 K], добавлен 24.04.2003Понятие сверхпроводников и их отличия. Основные моменты их окрытия и исследования. Особенности поведения сопротивления в зависимости от температуры. Определение критической температуры и магнитного поля. Классификация и примеры сверхпроводников.
презентация [0 b], добавлен 12.03.2013Электрические, тепловые, влажностные и химические свойства диэлектриков. Поляризация мгновенная и протекающая замедленно. Дипольно-релаксационная поляризации. Общее понятие о доменах, сопротивление изоляции. Классификация диэлектриков по виду поляризации.
презентация [964,7 K], добавлен 28.07.2013Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.
реферат [42,2 K], добавлен 01.12.2010Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.
курсовая работа [851,5 K], добавлен 04.06.2016История развития сверхпроводников. Создание генераторов переменного тока и магнитно-резонансного томографа на основе использования сверхпроводящего магнита. Применение высокотемпературных сверхпроводников. Внедрение ВТСП в вычислительную технику.
презентация [1,0 M], добавлен 22.01.2016История открытия сверхпроводников, отличие их от идеальных проводников. Эффект Мейснера. Применение макроскопического квантового явления. Свойства и применение магнитов. Использование в медицине медико-диагностической процедуры как электронной томографии.
презентация [7,4 M], добавлен 18.04.2016Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.
презентация [2,7 M], добавлен 11.04.2015История открытия сверхпроводников, их классификация. Фазовый переход в сверхпроводящее состояние. Научные теории, описывающие это явление и опыты, его демонстрирующие. Эффект Джозефсона. Применение сверхпроводимости в ускорителях, медицине, на транспорте.
курсовая работа [77,2 K], добавлен 04.04.2014Понятие диэлектрических потерь. Нагревание диэлектриков в электрическом поле, рассеивание части энергии поля в виде тепла как его следствие. Ухудшение свойств и ускорение процессов старения диэлектриков. Количественная оценка диэлектрических потерь.
презентация [794,0 K], добавлен 28.07.2013