Реактивное движение
Применение реактивного движения в природе на примере осьминогов, кальмаров, каракатиц. Реактивное движение "Межконтинентальная ракета". Физические основы работы реактивных двигателей, их виды. Особенности проектирования и создания летательного аппарата.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.05.2015 |
Размер файла | 31,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
МИНИСТЕРСТВО СЕЛЬКОГО ХОЗЯЙСТВА РФ
КАЛИНИНГРАДСКИЙ ФИЛИАЛ
федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«САНКТ- ПЕТЕРБУРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕТСИТЕТ»
РЕФЕРАТ
по дисциплине Физика
на тему «Реактивное движение»
Выполнила: студент 2 курса
Агрономического факультета
очного отделения
Гращенко Е.А.
Проверил: Василенко И.Н
г. Полесск 2014
Введение
Человек всегда хотел научиться летать. Его мечта исполнилась недавно - был построен самолёт. Но человек развивается, и развиваются его мечты. Вместо облаков человек захотел подняться к звёздам. Эта мечта осуществима только благодаря существованию в природе реактивного движения. Изучение реактивного движения важно для прогресса науки.
Развивая науку в этом направлении мы будем потихоньку идти к нашей мечте.
Реактивное движение
Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. Реактивное движение описывается, исходя из закона сохранения импульса.
Реактивное движение, используемое ныне в самолетах, ракетах и космических снарядах, свойственно осьминогам, кальмарам, каракатицам, медузам - все они, без исключения, используют для плавания реакцию (отдачу) выбрасываемой струи воды.
Примеры реактивного движения можно обнаружить и в мире растений.
В южных странах произрастает растение под названием "бешеный огурец". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном со скоростью до 10 м/с вылетает жидкость с семенами.
Применение реактивного движения в природе
Реактивное движение используется многими моллюсками - осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.
Осьминог
Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.
Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед. Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету. Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.
Применение реактивного движения в технике
В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону.
Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер - народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.
Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате. Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.
Реактивное движение «Межконтинентальная ракета»
Человечество всегда мечтало о путешествии в космос. Самые разные средства для достижения этой цели предлагали писатели - фантасты, учёные, мечтатели. Но единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос за многие века не смог изобрести ни один учёный, ни один писатель-фантаст. К. Э. Циолковский - основоположник теории космических полётов.
Впервые мечту и стремления многих людей впервые смог приблизить к реальности русский учёный Константин Эдуардович Циолковский(1857-1935), который показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, он впервые представил научное доказательство возможности использования ракеты для полётов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы. Ракетой Цоилковский назвал аппарат с реактивным двигателем, использующим находящиеся на нём горючее и окислитель.
Как известно из курса физики, выстрел из ружья сопровождается отдачей. По законам Ньютона, пуля и ружьё разлетелись бы в разные стороны с одинаковой скоростью, если бы имели одинаковую массу. Отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение, как в воздухе, так и в безвоздушном пространстве, так возникает отдача. Тем большую силу отдачи ощущает наше плечо, чем больше масса и скорость истекающих газов, и, следовательно, чем сильнее реакция ружья, тем больше реактивная сила. Эти явления объясняются законом сохранения импульса:
векторная (геометрическая) сумма импульсов тел, составляющих замкнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел системы.
К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула:
Здесь vmax - максимальная скорость ракеты, v0 - начальная скорость, vr - скорость истечения газов из сопла, m - начальная масса топлива, а M - масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Эта формула Циолковского является фундаментом, на котором строится весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского.
Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.
Таким образом, получили, что максимально достижимая скорость ракеты зависит в первую очередь от скорости истечения газов из сопла. А скорость истечения газов сопла в свою очередь зависит от вида топлива и температуры газовой струи. Значит, чем выше температура, тем больше скорость. Тогда для настоящей ракеты нужно подобрать самое калорийное топливо, дающее наибольшее количество теплоты. По формуле видно, что кроме всего прочего скорость ракеты зависит от начальной и конечной массы ракеты, от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Физические основы работы реактивного двигателя
В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов. Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д. После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то "двигать", приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт. Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.
Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через "звуковой барьер".
Классификация реактивных двигателей и особенности их использования
Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне "генеалогического дерева" семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей "ствол" прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все "химические" реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.
В бескомпрессорном двигателе другого типа, прямоточном, нет даже и этой клапанной решётки и давление в камере сгорания повышается в результате скоростного напора, т.е. торможения встречного потока воздуха, поступающего в двигатель в полёте. Понятно, что такой двигатель способен работать только тогда, когда летательный аппарат уже летит с достаточно большой скоростью, на стоянке он тяги не разовьет. Но зато при весьма большой скорости, в 4-5 раз большей скорости звука, прямоточный двигатель развивает очень большую тягу и расходует меньше топлива, чем любой другой "химический" реактивный двигатель при этих условиях. Вот почему прямоточные двигатели.
Особенности проектирования и создания летательного аппарата
реактивный движение двигатель ракета
Аэродинамика - наука о движении тел в воздушной среде - является теоретической основной авиации. Без успехов аэродинамики не возможно было бы стремительное развитие авиации, столь характерное для нашего времени. Но успехи аэродинамики были бы немыслимы без проведения экспериментальных работ, в основе которых использование аэродинамических труб, позволяющих производить моделирование полёта летательного аппарата с учётом теории подобия, в результате чего испытуемое изделие закреплялось стационарно, а воздушный поток набегал на него.
Размеры воздухозаборных устройств, их число, характер расположения, режимы работы существенно изменяют условия обтекания и аэродинамические свойства летательного аппарата, что в свою очередь влияет на тяговые и экономические характеристики двигателей.
Для обеспечения наименьших потерь полного давления и создания тем самым лучших условий работы двигателей воздухозаборные устройства должны размещаться на летательном аппарате так, чтобы они не затенялись крыльями, оперением и другими впихните свой лицо выступающими частями, т.е. чтобы в зоне входа в воздухозаборное устройство поток испытывал как можно меньшие возмущенияС этой целью нежелательно размещать воздухозаборное устройство вблизи поверхности корпуса на большом удалении от носовой части, если входной канал оказывается в зоне пограничного слоя с достаточно большой толщиной и поступающий воздух будет иметь большие потери полного давления
Вид аэродинамической схемы летательного аппарата с реактивным двигателем зависит от расположения воздухозаборных устройств. При большом удалении воздухозаборника от носовой части летательного аппарата перед входом в него должны быть предусмотрены устройства для отсоса пограничного слоя. Возможно вынесение входного сечения воздухозаборника за пределы пограничного слоя. Всё это предотвращает срыв потока воздуха и улучшает характеристики работы воздухозаборников.
С целью снижения потерь давления воздуха, поступающего в двигатель, и повышения эффективности его работы воздухозаборные устройства вместе с двигателями могут располагаться в виде гондол на крыльях или специальных пилонах. В этом случае для повышения устойчивости и улучшения управляемости предусмотрено хвостовое оперение.
Заключение
В настоящее время благодаря многим учёным со всего света, изучение
реактивного движения продвинуто, но насколько оно продвинуто и сколько осталось до конца пути никто не знает. Человек уже был в космосе, но он чувствует и знает, что он не увидел и одной миллиардной доли того чего бы хотел увидеть. Значит, нам есть к чему стремиться, а если в жизни есть цель, то значит то, что она небессмысленна
Список использованной литературы
Гельфер Я. М. Законы сохранения. - М.: Наука, 1967.
Кузов К. Мир без форм. - М.:Мир, 1976.
Детская энциклопедия. - М.: Издательство АН СССР, 1959.
Размещено на Allbest.ru
Подобные документы
Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. История создания реактивного двигателя, его основные элементы и принцип работы. Физические законы Циолковского, устройство ракеты-носителя.
презентация [1,0 M], добавлен 20.02.2012Движение, возникающее при отделении от тела со скоростью какой-либо его части. Использование реактивного движения моллюсками. Применение реактивного движения в технике. Основа движения ракеты. Закон сохранения импульса. Устройство многоступенчатой ракеты.
реферат [1,4 M], добавлен 02.12.2010Реактивное движение: сохранение импульса изолированной механической системы тел как сущность и принцип его возникновения. Примеры реактивного движения в природе и технике: "бешеный" огурец, морские животные, насекомые. Конструкция водометного двигателя.
реферат [3,0 M], добавлен 27.02.2011Реактивное движение, его применение: двигатели, оружие; проявление закона сохранения импульса тела при запуске многоступенчатой ракеты. История создания реактивной техники К.Э. Циолковским, Ю.А. Гагариным, С.П. Королевым. Реактивное движение в природе.
реферат [93,1 K], добавлен 08.08.2011Принципы реактивного движения, которые находят широкое практическое применение в авиации и космонавтике. Первый проект пилотируемой ракеты с пороховым двигателем известного революционера Кибальчича. Устройство ракеты-носителя. Запуск первого спутника.
презентация [1,3 M], добавлен 23.01.2015Реактивное движение среди растительного и животного мира. Примеры ракетных двигателей. Применение ракет в военном деле, в научных и метеорологические исследования, для нужд космонавтики, в любительских и профессиональных целях, в ракетных автомобилях.
презентация [4,2 M], добавлен 30.09.2012Понятие и характеристики реактивного двигателя. Космическая ракета — летательный аппарат, двигающийся за счёт реактивной силы. Рассмотрение принципа движения кальмара. Исследование К.Э. Циолковского. Действие продуктов сгорания углеводородного топлива.
презентация [3,8 M], добавлен 07.11.2014Процессы, которые происходят при взаимодействии тел. Закон сохранения импульса, условия применения. Основа вращения устройства "сигнерова колеса". История проекта ракеты с пороховым двигателем. Технические характеристики корабля-спутника "Восток-1".
презентация [439,5 K], добавлен 06.12.2011Импульс тела и силы. Изучение закона сохранения импульса и условий его применения. Исследование истории реактивного движения. Практическое применение принципов реактивного движения тела в авиации и космонавтике. Характеристика значения освоения космоса.
презентация [629,8 K], добавлен 19.12.2012Понятие реактивного движения, его проявление в ракете. Строение ракеты и ракетное топливо. Применение ракет в научной деятельности, космонавтике, военном деле. Создание модели с использованием явления перехода потенциальной энергии воды в кинетическую.
реферат [61,2 K], добавлен 03.11.2014