Фазовые переходы

Понятие фазовых переходов. Виды фазовых переходов первого рода: плавление, кристаллизация, испарение, конденсация и др. Агрегатные состояния веществ: газообразное, жидкое и твердое вещества, понятие плазмы. Особенности квантового фазового перехода.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.05.2015
Размер файла 80,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Смоленский государственный университет

Реферат

По теме: «Фазовые переходы»

Выполнил: студент 1 курса

Дольников Александр

Содержание

1. Понятие фазового перехода

2. Классификация фазовых переходов

3. Фазовые переходы первого рода

4. Агрегатные состояния веществ

4.1 Понятие газообразное вещество

4.2 Понятие жидкого вещества

4.3 Понятие твердого вещества

4.4 Понятие плазмы

5. Квантовый фазовый переход

6. Фазовые переходы второго рода

7. Равновесие фаз

Список литературы

1. Понятие Фазового перехода

Фазовый переход (фазовое превращение) в термодинамике -- переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы -- более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило, равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

2. Классификация фазовых переходов

Фазовые переходы первого рода -- фазовые переходы, при которых скачком изменяются первые производные термодинамических потенциалов по интенсивным параметрам системы (температуре или давлению). Переходы первого рода реализуются как при переходе системы из одного агрегатного состояния в другое, так и в пределах одного агрегатного состояния (в отличие от фазовых переходов второго рода, которые происходят в пределах одного агрегатного состояния)

Наиболее распространённые примеры фазовых переходов первого рода:

· плавление и кристаллизация

· испарение и конденсация

· сублимация и десублимация

Фазовые переходы второго рода -- фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда, как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д. Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода:

· прохождение системы через критическую точку

· переход парамагнетик-ферромагнетик или парамагнетик -антиферромагнетик (параметр порядка -- намагниченность)

· переход металлов и сплавов в состояние сверхпроводимости (параметр порядка -- плотность сверхпроводящего конденсата)

· переход жидкого гелия в сверхтекучее состояние (п. п. -- плотность сверхтекучей компоненты)

· переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, то есть фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

3. Фазовые переходы первого рода

· Плавлемние -- это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения -- температура плавления.

Способность плавиться относится к физическим свойствам вещества

При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ -- углерод (по разным данным 3500 -- 4500 °C) а среди произвольных веществ -- карбид тантала-гафния Ta4HfC5 (4216 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.

Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путем сублимации сразу переходят в газообразное состояние.

· Кристаллизация -- процесс фазового перехода вещества из жидкого состояния в твёрдое кристаллическое с образованием кристаллов. Фазой называется однородная часть термодинамической системы отделённая от других частей системы (других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками.

Кристаллизация -- это процесс выделения твёрдой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде.

Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пресыщения пара, когда практически мгновенно возникает множество мелких кристалликов -- центров кристаллизации. Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Рост граней кристалла происходит послойно, края незавершённых атомных слоев (ступени) при росте движутся вдоль грани. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов (многогранные, пластинчатые, игольчатые, скелетные, дендритные и другие формы, карандашные структуры и т. д.). В процессе кристаллизации неизбежно возникают различные дефекты.

На число центров кристаллизации и скорость роста значительно влияет степень переохлаждения.

Степень переохлаждения -- уровень охлаждения жидкого металла ниже температуры перехода его в кристаллическую (твердую) модификацию. С.п. необходима для компенсации энергии скрытой теплоты кристаллизации. Первичной кристаллизацией называется образование кристаллов в металлах (сплавах и жидкостях) при переходе из жидкого состояния в твердое.

· Испарение -- процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое ). При испарении с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом их кинетическая энергия должна быть достаточна для совершения работы, необходимой для преодоления сил притяжения со стороны других молекул жидкости.

· Конденсация паров (лат. condense -- накопляю, уплотняю, сгущаю) -- переход вещества в жидкое или твёрдое состояние из газообразного (обратный последнему процессу называется сублимация). Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

· Сублимация -- переход вещества из твёрдого состояния сразу в газообразное, минуя жидкое. Поскольку при возгонке изменяется удельный объём вещества и поглощается энергия (теплота сублимации), возгонка является фазовым переходом первого рода.

Обратным процессом является десублимация. Примером десублимации являются такие атмосферные явления, как и ней на поверхности земли и изморозь на ветвях деревьев и проводах.

· Десублимация -- физический процесс перехода вещества из газообразного состояния в твёрдое, минуя жидкое. Примером десублимации является появление ледяных узоров на оконных стёклах в зимнее время и такие атмосферные явления, как и ней и изморозь.

При десублимации высвобождается энергия. Десублимация является экзотермическим фазовым переходом.

Обратным процессом является возгонка (сублимация).

4. Агрегатные состояния веществ

4.1 Понятие газообразного вещества

Испарение - это парообразование, происходящее с поверхности жидкости. Разные молекулы жидкости при одной и той же температуре движутся с разными скоростями. Если достаточно «быстрая» молекула окажется у поверхности жидкости, то она может преодолеть притяжение соседних молекул и вылететь из жидкости. Вылетевшие с поверхности жидкости молекулы образуют пар. Одновременно с испарением происходит перенос молекул из пара в жидкость. Явление превращения пара в жидкость называется конденсацией. Если нет притока энергии к жидкости извне, то испаряющаяся жидкость охлаждается. Конденсация пара сопровождается выделением энергии. Скорость испарения жидкости зависит от рода жидкости и от ее температуры, от площади ее поверхности, от движения воздушных масс (ветра) над поверхностью жидкости. Кипение - это испарение изнутри и с поверхности жидкости. При нагревании жидкости пузырьки воздуха (он растворен в ней) внутри нее постепенно растут. Архимедова сила, действующая на пузырьки, увеличивается, они всплывают и лопаются. Эти пузырьки содержат не только воздух, но и водяной пар, так как жидкость испаряется внутрь этих пузырьков. Температура кипения - это температура, при которой жидкость кипит. В процессе кипения при t o = соnst к жидкости следует подводить энергию путем теплообмена, т.е. подводить теплоту парообразования

Теплота парообразования пропорциональна массе вещества, превратившегося в пар. Величина - удельная теплота парообразования. Она показывает, какое количество теплоты необходимо для превращения 1 кг жидкости в пар при постоянной температуре. Она измеряется в Дж/кг, кДж/кг. Наибольшая часть теплоты парообразования расходуется на разрыв связей между частицами, некоторая ее часть идет на работу, совершаемую при расширении пара. С ростом давления температура кипения жидкости повышается, а удельная теплота парообразования уменьшается.

Чем легче газ, т.е. чем меньше атомный вес вещества, тем она больше.

Молекулы жидкости, участвуя в тепловом движении, непрерывно сталкиваются между собой. Это приводит к тому, что некоторые из них приобретают кинетическую энергию, достаточную для преодоления молекулярного притяжения. Такие молекулы, находясь у поверхности жидкости, вылетают из неё, образуя над жидкостью пар (газ). Молекулы пар, двигаясь хаотически, ударяются о поверхность жидкости. При этом часть из них может перейти в жидкость. Эти два процесса вылета молекул жидкости и их обратное возвращение в жидкость происходят одновременно. Если число вылетающих молекул больше числа возвращающихся, то происходит уменьшение массы жидкости, т.е. жидкость испаряется, если же наоборот, то количество жидкости увеличивается, т.е. наблюдается конденсация пара. Возможен случай, когда массы жидкости и пара, находящегося над ней, не меняются. Это возможно, когда число молекул, покидающих жидкость, равно числу молекул, возвращающихся в неё. Такое состояние называется динамическим равновесием, а пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным. Если же между паром и жидкостью нет динамического равновесия, то он называется ненасыщенным. Очевидно, что насыщенный пар при данной температуре имеет определённую плотность, называемую равновесной.

Количество теплоты, которое необходимо сообщить единице массы жидкости, для превращения её в пар при неизменной температуре называется удельной теплотой парообразования. Удельная теплота парообразования зависит от температуры жидкости, уменьшаясь с её повышением. При конденсации количество теплоты, затраченное на испарение жидкости, выделяется. Конденсация - процесс превращения из газообразного состояния в жидкое.

Неравномерное распределение кинетической энергии теплового движения приводит к тому. Что при любой температуре кинетическая энергия некоторой части молекул может превысить потенциальную энергию связи с остальными. Испарением называется процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы. Испарение сопровождается охлаждением, т.к. более быстрые молекулы покидают жидкость. Испарение жидкости в закрытом сосуда при неизменной температуре приводит к увеличению концентрации молекул в газообразном состоянии. Через некоторое время наступает равновесие между количеством испаряющихся молекул и возвращающихся в жидкость.

Газообразное вещество, находящееся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным. Давление насыщенного пара не зависит при постоянной температуре от объема. При постоянной концентрации молекул давление насыщенного пара растет быстрее, чем давление идеального газа, т.к. под действием температуры количество молекул увеличивается. Отношение давления водяного пара при данной температуре к давлению насыщенного пара при той же температуре, выраженное в процентах, называется относительной влажностью воздуха. Чем ниже температура, тем меньше давление насыщенного пара, таким образом при охлаждении до некоторой температуры пар становится насыщенным. Эта температура называется точкой росы t p.

4.2 Понятие жидкого вещества

Молекулы в жидкости расположены достаточно близко друг к другу, так что при попытке сжатия жидкости возникают большие силы отталкивания. Отсюда малая сжимаемость жидкостей. Молекулы ведут оседлую жизнь, в среднем она равна 10 -11 с. Жидкости текучи, т.е. не сохраняют свою форму

Пусть жидкость занимает часть объема замкнутого сосуда. При любой температуре существует некоторое количество достаточно энергичных молекул внутри жидкости, которые способны разорвать связи с соседними молекулами и вылететь из жидкости. Чем больше температура и при наличии ветра тем быстрее происходит испарение. В то же время в паре, занимающем остальной объем внутри сосуда, всегда найдутся молекулы, которые влетают обратно в жидкость и не могут вылететь обратно. Таким образом, в этом сосуде все время происходят два конкурирующих процесса - испарение и обратная конденсация. Когда число молекул, покидающих жидкость, становится равным числу молекул, возвращающихся обратно, то наступает динамическое равновесие между жидкой и газообразной фазой, говорят, что пар достиг насыщения .

По мере увеличения температуры жидкости интенсивность испарения увеличивается, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар.

В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда, а также на взвешенных в жидкости пылинках. Пары жидкости, которые находятся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает, и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Перед закипанием чайник почти перестает шуметь.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давления насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения, и наоборот, уменьшая внешнее давление - понижается температура кипения.

У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости, т.к. при меньших температурах давление насыщенного пара становится равным атмосферному.

Критическая температура - это температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром. Представление о критической температуре ввел Д. И. Менделеев. При критической температуре плотность и давление насыщенного пара становятся максимальными, а плотность жидкости, находящейся в равновесии с паром, - минимальной. Особое значение критической температуры состоит в том, что при температуре выше критической ни при каких давлениях газ нельзя обратить в жидкость. Газ, имеющий температуру ниже критической, представляет собой ненасыщенный пар.

4.3 Понятие твердого вещества

В твердом теле атомы или молекулы могут лишь колебаться вокруг определенных положений равновесия. Поэтому твердые тела сохраняют и форму, и объем. У кристаллических твердых тел центры атомов (молекул) образуют пространственную решетку, в узлах которой находятся атомы вещества. Аморфные твердые тела не обладают жесткой структурой и скорее напоминают застывшие жидкости.

Переход вещества из твердого состояния в жидкое называется плавлением. Обратный процесс называется отвердеванием. Температура, при которой вещество плавится (отвердевает), называется температурой плавления (отвердевания) вещества. Температура плавления и отвердевания для данного вещества при одинаковых условиях одинакова. При плавлении (отвердевании) температура вещества не меняется. Однако это не значит, что в процессе плавления к телу не надо подводить энергию. Опыт показывает, что если подача энергии путем теплообмена прекращается, то прекращается и процесс плавления. При плавлении подводимая к телу теплота идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Небольшая же часть теплоты при плавлении расходуется на совершение работы по изменению объема тела, так как у большинства веществ при плавлении объем возрастает. В процессе плавления к телу подводится некоторое количество теплоты, которая называется теплотой плавления. Теплота плавления пропорциональна массе расплавившегося вещества. Величина (ламбда) называется удельной теплотой плавления вещества. Удельная теплота плавления показывает, какое количество теплоты необходимо, чтобы расплавить единицу массы данного вещества при температуре плавления. Она измеряется в Дж/кг, кДж/кг.

4.4 Понятие плазмы

Термин «плазма» предложили использовать американскими физиками Ленгмюром и Тонксом в 1923 году. Плазма - нормальная форма существования вещества при температуре порядка 10 000 градусов и выше, она представляет собой газ, в котором значительная часть атомов или молекул ионизиована. Удивительно, но плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99% массы Вселенной. Солнце и звёзды, как уже было сказано выше, представляют собой не что иное, как сгустки высокотемпературной плазмы, верхний слой атмосферной оболочки Земли, так называемая, ионосфера, также образован из плазмы, ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе и шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности. Плюс к этому, плазма обладает очень интересными свойствами, которые находят всё более широкое применение в разработках, посвящённых большим проблемам современной техники. Рассмотрим замкнутый сосуд, сделанный из очень тугоплавкого материала, в котором находиться небольшое количество некоторого вещества. Постепенно повышая его температуру, будем подогревать сосуд вместе с содержащимся в нем веществом. Пусть первоначально вещество, содержащееся в сосуде, было в твёрдом состоянии. В некоторый момент времени это вещество начнёт плавиться, а при ещё более высокой температуре - испаряться. Образовавшийся газ станет равномерно заполнять весь объём. При достижении достаточно высокого уровня температуры, все молекулы газа, если это молекулярный газ, диссоциируют - распадутся на отдельные атомы. В результате в сосуде останется уже газообразная смесь элементов, из которых состоит вещество. Испытывая время от времени столкновения между собой, атомы этого вещества будут быстро беспорядочно двигаться.

5. Квантовый фазовый переход

Квантовый фазовый переход (квантовое фазовое превращение) -- переход вещества из одной квантовой термодинамической фазы в другую при изменении внешних условий, происходящий, однако, при отсутствии тепловых флуктуаций, то есть при . Таким образом, система перестраивается под действием каких-либо нетепловых параметров (например, давление или магнитное поле).

Классический фазовый переход описывается разрывом термодинамических функций данной системы. Подобный разрыв свидетельствует о том, что частицы системы перестраиваются. Типичным примером подобного поведения является переход воды из жидкого состояния в твёрдое (лёд). За процессы, происходящие при классических фазовых переходах, ответственны два конкурирующих параметра: энергия системы и энтропия её термических флуктуаций. Энтропия классической системы при нулевой температуре отсутствует, поэтому фазовый переход произойти не может. фазовый переход квантовый агрегатный

Однако в квантово-механической системе происходят квантовые флуктуации, которые и ответственны за фазовый переход. Таким образом, квантовые флуктуации могут переводить систему в другую фазу. Контролируют эти квантовые флуктуации нетепловые параметры, такие как давление, концентрация.

Системой, испытывающий квантовый фазовый переход первого рода, является гелий. При атмосферном давлении он не переходит в твёрдую фазу даже при абсолютном нуле. Однако, при давлениях выше 25 атмосфер гелий кристаллизуется в гексагональную упаковку.

Наиболее ярким представителем материалов, в которых происходит квантовый фазовый переход второго рода, является геликоидальный ферромагнетик MnSi. Данный материал при нормальном давлении имеет критическую температуру перехода из парамагнитного состояния в слабое ферромагнитное состояние 29 K. Однако при приложении внешнего гидростатического давления порядка 14,6 кбар , в результате чего возникает квантовый фазовый переход.

6. Фазовые переходы второго рода

Изменение симметрии

Фазовые переходы второго рода сопровождаются изменением симметрии вещества. Изменение симметрии может быть связано со смещением атомов определённого типа в кристаллической решётке, либо с изменением упорядоченности вещества.

В большинстве случаев, фаза, обладающая большей симметрией (т. е. включающей в себя все симметрии другой фазы), соответствует более высоким температурам, но существуют и исключения. Например, при переходе через нижнюю точку Кюри в сегнетовой соли, фаза, соответствующая меньшей температуре, обладает ромбической симметрией, в то время как фаза, соответствующая большей температуре, обладает моноклинной симметрией.

Для количественной характеристики симметрии при фазовом переходе второго рода вводится параметр порядка, принимающий отличные от нуля значения в фазе с большей симметрией, и тождественно равный нулю в неупорядоченной фазе.

Теоретическое описание фазовых переходов второго рода

Теория Ландау

Теория среднего поля - самый первый и простейший способ теоретического описания критических явлений. Для этого производится линеаризация много частичного гамильтониана взаимодействия, то есть фактически, он заменяется на одно частичный гамильтониан с некоторым эффективным самосогласованным полем. Таким образом, мы переходим от близкодействия к дальнодействию, то есть к взаимодействию с формально бесконечным радиусом. Также мы пренебрегаем корреляционными эффектами.

Применение теории среднего поля для описания фазовых переходов фактически эквивалентно применению теории Ландау, то есть разложению функционала свободной энергии по степеням параметра порядка около критической точки.

При описании фазовых переходов, эффективное поле обычно принимается пропорциональным параметру порядка. Как правило, множителем пропорциональности является средняя энергия взаимодействия частиц системы. Так, в магнетике рассматривается действие на отдельный электронный спин локального магнитного поля, создаваемое соседними спинами.

Критические показатели для магнетика в теории Ландау:

Для других систем - антиферромагнетика, бинарного сплава и системы жидкость-пар теория среднего поля даёт те же критические показатели.

Критические показатели, полученные в теории среднего, поля плохо согласуются с экспериментальными значениями. Но она предсказывает полную универсальность показателей, то есть их независимость от деталей теории.

Основным недостатком теории является то, что она неприменима в тех случаях, когда существенными становятся флуктуации параметра порядка, то есть непосредственно в окрестности точки фазового перехода: Теория Ландау справедлива до тех пор, пока флуктуации в объеме с линейными размерами порядка радиуса корреляции малы по сравнению с равновесным значением параметра порядка. В противном случае термодинамический подход неприменим. Для самих точек фазового перехода теория даёт завышенные показания, а предсказываемые ей критические показатели отличаются от экспериментальных значений. Кроме того, критические показатели, согласно теории среднего поля, не зависят от размерностей пространства и параметра порядка. Для систем с размерностями d=1, d=2 теория среднего поля вообще не применима.

· Примеры фазовых переходов второго рода

· переход парамагнетик-ферромагнетик или парамагнетик -антиферромагнетик (параметр порядка -- намагниченность),

· переход металлов и сплавов в состояние сверхпроводимости (параметр порядка -- плотность сверхпроводящего конденсата),

· переход жидкого гелия в сверхтекучее состояние (п.п. -- плотность сверхтекучей компоненты),

· переход аморфных материалов в стеклообразное состояние.

7. Равновесие фаз

Равновесие фаз в термодинамике -- состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.

Типы фазовых равновесий:

Тепловое равновесие означает, что все фазы вещества в системе имеют одинаковую температуру.

Механическое равновесие означает равенство давлений по разные стороны границы раздела соприкасающихся фаз. Строго говоря, в реальных системах эти давления равны лишь приближенно, разность давлений создается поверхностным натяжением.

Химическое равновесие выражается в равенстве химических потенциалов всех фаз вещества.

Условие равновесия фаз

Рассмотрим химически однородную систему (состоящую из частиц одного типа). Пусть в этой системе имеется граница раздела между фазами 1 и 2. Как было указано выше, для равновесия фаз требуется равенство температур и давлений на границе раздела фаз. Что состояние термодинамического равновесия в системе с постоянными температурой и давлением соответствует точке минимума потенциала Гиббса.

Потенциал Гиббса такой системы будет равен

,

где и -- химические потенциалы, а и -- числа частиц в первой и второй фазах соответственно.

При этом сумма (полное число частиц в системе) меняться не может, поэтому можно записать

.

Предположим, что , для определенности, . Тогда, очевидно, минимум потенциала Гиббса достигается при (все вещество перешло в первую фазу).

Таким образом, равновесие фаз возможно только в том случае, когда химические потенциалы этих фаз по разные стороны границы раздела равны:

.

Уравнение Клаперона-Клаузиса

Из условия равновесия фаз можно получить зависимость давления в равновесной системе от температуры. Если говорить о равновесии жидкость -- пар, то под давлением понимают давление насыщенных паров, а зависимость называется кривой испарения.

Из условия равенства химических потенциалов следует условие равенства удельных термодинамических потенциалов :, где

,

потенциал Гиббса i-й фазы, -- её масса.

Отсюда:

,

а значит,

,

где и -- удельные объем и энтропия фаз. Отсюда следует, что

,

и окончательно

,

где -- удельная теплота фазового перехода (например, удельная теплота плавления или удельная теплота испарения).

Последнее уравнение называется уравнением Клапейрона -- Клаузиуса.

Правило фаз Гиббса

термодинамическом равновесии, число фаз не может превышать числа компонентов, увеличенного на 2 ; установлено Дж. У. Гиббсом в 1873--76.

Рассмотрим теперь систему, вообще говоря, химически неоднородную (состоящую из нескольких веществ). Пусть -- число компонентов (веществ) в системе, а -- число фаз. Условие равновесия фаз для такой системы можно записать в виде системы из уравнений:

Здесь -- химический потенциал для i-го компонента в j-й фазе. Он однозначно определяется давлением, температурой и концентрацией каждого компонента в фазе. Концентрации компонентов не независимы (их сумма равна 1). Поэтому рассматриваемая система уравнений содержит неизвестных ( -- концентрации компонентов в фазах, плюс температура и давление).

Система разрешима, вообще говоря, если число уравнений не превышает числа неизвестных (система, не удовлетворяющая этому условию, также может быть разрешима, однако это исключительный случай, с которым в физике можно не считаться). Поэтому

,

отсюда

,

то есть число фаз в равновесной системе может превышать число компонентов не более, чем на два.

Последнее неравенство называется правилом фаз Гиббса. В частном случае для однокомпонентной (химически однородной системы) оно превращается в условие

.

Список литературы

1. Арцимович Л.А. Элементарная физика плазмы, М.: ИНФРА-М, 2001.-597с.

2. Зельдович Б.И., Мышкис А.Д. Элементы математической физики. -- М.: Просвещение, 2001. -- 352с.

3. Кибец И. Н., Кибец В.И. Физика. Справочник. - Харьков: Фолио ; Ростов н/Д : Феникс, 2003.-587с.

4. Рузавин Г.И. Концепции современного естествознания. М.: ИНФРА-М, 2003.-722с.

5. Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика: Учеб. пособие для студентов втузов. -- М.: Наука, 2002. -- 432с.

6. Франк-Каменецкий Д.А. Плазма - четвёртое состояние вещества, М, Просвещение, 2001.- 679с.

7. Интернет https://ru.wikipedia.org

Размещено на Allbest.ru


Подобные документы

  • Достижение упорядоченности путем избавления системы от тепловой энергии. Агрегатные состояния вещества: твердое, жидкое и газообразное. Организация атомов в кристаллах, свойства сверхпроводимости и магнетизма. Ферромагнетики в условиях фазовых переходов.

    реферат [475,1 K], добавлен 26.09.2009

  • Отклонение газов от идеальности. Формула Ван-дер-Ваальса. Термодинамические величины классической плазмы. Критические явления при фазовых переходах. Фазовые переходы и метастабильные состояния. Кинетика фазовых переходов и проблема роста квазикристаллов.

    реферат [555,8 K], добавлен 07.02.2016

  • Коэффициент термического расширения, формулы. Фазовые переходы первого и второго рода в термодинамике. Плавление и кристаллизация, испарение и конденсация, сублимация и десублимация. График зависимости изменения объема воды от температуры и времени.

    лабораторная работа [402,2 K], добавлен 22.09.2013

  • Понятие и содержание процесса фазового перехода первого рода как изменения агрегатного состояния вещества. Основные стадии данного перехода и его особенности, физическое обоснование и закономерности. Сущность теории Зельдовича. Бистабильная система.

    презентация [199,0 K], добавлен 22.10.2013

  • Агрегатное состояние тела, его виды и характеристика. Процессы перехода из одного состояния в другое. Плавление - переход вещества из кристаллического (твёрдого) состояния в жидкое. Удельная теплота плавления, температура плавления и кипения воды.

    реферат [1,0 M], добавлен 08.01.2011

  • Понятие фазового перехода и твердой растворимости. Типы фазовых диаграмм. Системы, их значение в микроэлектронике. Фазовые диаграммы, в которых в качестве одной из компонент фигурирует именно кремний. Двухфазная диаграмма и процесс отвердевания.

    реферат [1,1 M], добавлен 23.06.2010

  • Понятие вещества и его состояния (твердое, жидкое, газообразное, плазменное), влияние изменения температуры. Физическое состояние газа, характеризующееся величинами: температура, давление, объем. Формулировка газовых законов: Бойля-Мариотта, Гей-Люссака.

    презентация [1,1 M], добавлен 09.04.2014

  • Понятие и предмет термодинамики. Определение объемного состава и средней молярной массы смеси, а также вычисление парциальных объемов компонентов. Характеристика фазового равновесия и фазовых переходов. Основы введения в химическую термодинамику.

    контрольная работа [328,4 K], добавлен 29.03.2015

  • Понятие и основные этапы кристаллизации как процесса фазового перехода вещества из жидкого состояния в твердое кристаллическое с образованием кристаллов. Физическое обоснование данного процесса в природе. Типы кристаллов и принципы их выращивания.

    презентация [464,0 K], добавлен 18.04.2015

  • Фазами называют однородные различные части физико-химических систем. Фазовые переходы первого и второго рода. Идеальные и реальный газы. Молекулярно – кинетическая теория критических явлений. Характеристика сверхтекучести и сверхпроводимости элементов.

    реферат [32,3 K], добавлен 13.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.