Атомная энергетика: история и современность

История развития атомной энергетики в России. Классификация атомных электростанций. Принцип действия атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Анализов сырьевого рынка и потребностей общества в электрической энергии.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 19.04.2015
Размер файла 498,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

Введение

История

Выработка электроэнергии

Современное состояние и перспективы

Классификации

Принцип действия

Достоинства и недостатки

Выбросы

Заключение

Приложение

Введение

В 1948 г. по предложению И. В. Курчатова начались первые работы по практическому применению энергии атома для получения электроэнергии. Сегодня же, атомные электростанции являются одними из основных поставщиков электроэнергии для промышленности и бытового потребления. Но насколько же опасна ядерная энергетика и каковы последствия несчастного случая на АЭС? Насколько выгодно создание таких электростанций? В этой работе мы попытаемся ответить на эти вопросы.

История

Первая в мире промышленная атомная электростанция мощностью 5 Мвт была запущена 27 июня 1954 года в СССР, в городе Обнинске, расположенном в Калужской области. В 1958 году была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт, впоследствии полная проектная мощность была доведена до 600 МВт. В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 года генератор 1-й очереди дал ток потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 365 МВт запущен в декабре 1969 года. В1973 году запущена Ленинградская АЭС.

За пределами СССР первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле (Великобритания).Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

В 1979 году произошла серьёзная авария на АЭС Три-Майл-Айленд, после чего США прекратили строительство атомных реакторов, в планах постройка новых 2 реакторов на базе старой АЭС лишь к 2017..

В 1986 году -- масштабная катастрофа на Чернобыльской АЭС, которая, помимо непосредственных последствий, серьёзно отразилась на всей ядерной энергетике в целом. Она вынудила специалистов всего мира пересмотреть проблему безопасности АЭС и задуматься о необходимости международного сотрудничества в целях повышения безопасности АЭС.

15 мая 1989 года на учредительной ассамблее в Москве, было объявлено об официальном образовании Всемирной ассоциации операторов атомных электростанций, международной профессиональной ассоциации, объединяющей организации, эксплуатирующие АЭС, во всём мире. Ассоциация поставила перед собой амбициозные задачи по повышению ядерной безопасности во всём мире, реализуя свои международные программы. Крупнейшая АЭС в Европе -- Запорожская АЭС в г. Энергодаре (Запорожская область, Украина), строительство которой началось в 1980 году. С 1996 года работают 6 энергоблоков суммарной мощностью 6 ГВт.

Крупнейшая АЭС в мире (по установленной мощности) -- АЭС Касивадзаки-Карива находится в Японском городе Касивадзаки префектуры Ниигата. В эксплуатации находятся пять кипящих ядерных реакторов и два улучшенных кипящих ядерных реакторов , суммарная мощность которых составляет 8,212 ГВт. Последняя крупная авария на АЭС произошла в марте 2011 года в Японии в префектуре Фукусима. Авария на АЭС Фукусима-1 произошла в результате воздействия на АЭС сильного землетрясения и последовавшего за ним цунами.

Выработка электроэнергии

На сегодняшний день мировыми лидерами по производству ядерной электроэнергии являются: США, Франция, Япония, Россия, Корея и Германия.

· США (836,63 млрд. кВт·ч/год), работает 104 атомных реактора (20 % от вырабатываемой электроэнергии)

· Франция (439,73 млрд. кВт·ч/год),

· Япония (263,83 млрд. кВт·ч/год),

· Россия (177,39 млрд. кВт·ч/год),

· Корея (142,94 млрд. кВт·ч/год)

· Германия (140,53 млрд. кВт·ч/год)

Современное состояние и перспективы

31 страна использует атомные электростанции. В мире действует 388 энергетических ядерных реакторов общей мощностью 333 ГВт, российская компания «ТВЭЛ» поставляет топливо для 73 из них (17 % мирового рынка). Однако 45 реакторов не производили электричество более полутора лет. Большая часть из них находятся в Японии.

Согласно докладу о состоянии индустрии ядерной энергетики на 2014 год в отрасли наблюдается спад. Пик производство ядерной энергии был зафиксирован в 2006 году (2,660 ТВч). Доля ядерной энергетики в глобальном производстве электричества снизилась с 17,6 % в 1996 году до 10,8 % в 2013 году.

Две трети строящихся реакторов приходятся на Китай, Индию и Россию. Перспективы строительства новых реакторов в некоторых случаях вызывают сомнения. Глобально строительство восьми реакторов продолжается более 20 лет.

Прослеживается тенденция к старению ядерных реакторов. Средний возраст действующих реакторов составляет 28,5 лет. Самый старый действующий реактор находится в Швейцарии, работает в течение 45 лет.

153 реактора были закрыты. Средний возраст закрытого реактора составляет 23 года.

Академик Анатолий Александров считал, что «ядерная энергетика крупных масштабов явится величайшим благом для человечества и разрешит целый ряд острых проблем».

В настоящее время разрабатываются международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые обещают повысить безопасность и увеличить КПД АЭС.

Россия приступила к строительству первой в мире плавающей АЭС, позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе -- и индивидуальных домов. С уменьшением мощности установки растёт предполагаемый масштаб производства. Малогабаритные реакторы (см., например, Hyperion АЭС) создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Классификация

атомный энергетика реактор электростанция

1) По типу реакторов

Атомные электростанции классифицируются в соответствии с типом используемых реакторов:

· с реакторами на тепловых нейтронах, в том числе с:

· водо-водяными

· кипящими

· тяжеловодными

· газоохлаждаемыми

· графито-водными

· высокотемпературными газоохлаждаемыми

· тяжеловодными газоохлаждаемыми

· тяжеловодными водоохлаждаемыми

· кипящими тяжеловодными

· с реакторами на быстрых нейтронах

2) По виду отпускаемой энергии

Атомные станции по виду отпускаемой энергии можно разделить на:

· Атомные электростанции (АЭС), предназначенные для выработки электрической энергии. При этом на многих АЭС есть теплофикационные установки, предназначенные для подогрева сетевой воды, используя тепловые потери станции.

· Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

Принцип действия

На рисунке (см. приложение) показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер.

Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, реакторы на быстрых нейтронах -- два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором. В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Достоинства и недостатки

Главное преимущество АЭС -- практическая независимость от источников топлива из-за небольшого объёма используемого топлива, например 54 тепловыделяющих сборки общей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1--1,5 года (для сравнения, одна только Троицкая ГРЭС(государственная районная электростанция) мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, ничтожны. В России это особенно важно в европейской части, так как доставка угля из Сибири слишком дорога.

Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС (тепловая электростанция) суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых и до 165 000 тонн на пылеугольных ТЭС. Подобные выбросы на АЭС полностью отсутствуют. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода вообще. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери, существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газ мазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.

Затраты на строительство АЭС по оценкам, составленным на основе реализованных в 2000-х годах проектов, ориентировочно равны 2300 $ за кВт электрической мощности, эта цифра может снижаться при массовости строительства (для ТЭС на угле 1200 $, на газе -- 950 $). Прогнозы на стоимость проектов, осуществляемых в настоящее время, сходятся на цифре 2000 $ за кВт (на 35 % выше, чем для угольных, на 45 % -- газовых ТЭС).

Главный недостаток АЭС -- тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура реактора).

Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства.

Выбросы

Любая работающая АЭС оказывает влияние на окружающую среду по трём направлениям:

· газообразные (в том числе радиоактивные) выбросы в атмосферу;

· выбросы большого количества тепла;

· распространение вокруг АЭС жидких радиоактивных отходов.

В процессе работы реактора АЭС суммарная активность делящихся материалов возрастает в миллионы раз. Количество и состав газоаэрозольных выбросов радионуклидов в атмосферу зависит от типа реактора, продолжительности эксплуатации, мощности реактора, эффективности газо- и водоочистки. Газоаэрозольные выбросы проходят сложную систему очистки, необходимую для снижения их активности, а затем выбрасываются в атмосферу через высокую трубу, предназначенную для снижения их температуры.

Основные компоненты газоаэрозольных выбросов -- радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и активированных продуктов коррозии, летучие соединения радиоактивного йода. В общей сложности в реакторе АЭС из уранового топлива образуются посредством деления атомов около 300 различных радионуклидов, из которых более 30 могут попасть в атмосферу. Среди них (см. приложение).

Реактор типа ВВЭР образует в год около 40000 Ки газообразных радиоактивных выбросов. Большинство из них удерживается фильтрами или быстро распадаются, теряя радиоактивность. При этом реакторы типа РБМК(реактор большой мощности канальный) дают на порядок больше газообразных выбросов, чем реакторы типа ВВЭР. Среднесуточный выброс радиоактивных газов и аэрозолей на Курской АЭС в 1981-90 и Смоленской в 1991-92 достигал 600--750 Ки/сут. В среднем в сутки на территории России газообразные выбросы АЭС составляли до 1993 г. около 800 Ки (за год -- около 300 тыс. Ки).

Большая часть радиоактивности газоаэрозольных выбросов генерируется короткоживущими радионуклидами и без ущерба для окружающей среды распадается за несколько часов или дней. Кроме обычных газообразных выбросов время от времени АЭС выбрасывает в атмосферу небольшое количество радионуклидов -- продуктов коррозии реактора и первого контура, а также осколков деления ядер урана. Они прослеживаются на несколько десятков километров вокруг любой АЭС

Заключение

Учитывая результаты существующих прогнозов по истощению к середине, концу следующего столетия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которого, по расчетам, должно хватить на 300 лет), из-за вредных выбросов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-размножителей хватит не менее чем на 1000 лет, можно считать, что на данном этапе развития науки и техники тепловые, атомные и гидроэлектрические источники будут еще долгое время преобладать над остальными источниками электроэнергии.

Некоторые ученые и экологи в конце 1990-х гг. говорили о скором запрещении государствами Западной Европы атомных электростанции. Но исходя из современных анализов сырьевого рынка и потребностей общества в электрической энергии, эти утверждения выглядят неуместными.

Приложение

Размещено на Allbest.ru


Подобные документы

  • Принцип работы атомной электростанции, ее достоинства и недостатки. Классификация по типу реакторов, по виду отпускаемой энергии. Получение электроэнергии на атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Крупнейшие АЭС РФ.

    презентация [886,7 K], добавлен 22.11.2011

  • Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат [430,1 K], добавлен 28.10.2013

  • Мировые лидеры в производстве ядерной электроэнергии. Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Главный недостаток АЭС. Реакторы на быстрых нейтронах. Проект первой в мире плавучей атомной электростанции.

    реферат [1,4 M], добавлен 22.09.2013

  • История создания промышленных атомных электростанций. Принцип работы АЭС с двухконтурным водо-водяным энергетическим реактором. Характеристика крупнейших электростанций мира. Влияние АЭС на окружающую среду. Перспективы использование ядерной энергии.

    реферат [299,9 K], добавлен 27.03.2015

  • Основные технико-экономические показатели энергоблока атомной электростанции. Разработка типового оптимизированного и информатизированного проекта двухблочной электростанции с водо-водяным энергетическим реактором ВВЭР-1300. Управление тяжелыми авариями.

    реферат [20,6 K], добавлен 29.05.2015

  • Мировой опыт развития атомной энергетики. Развитие атомной энергетики и строительство атомной электростанции в Беларуси. Общественное мнение о строительстве АЭС в республике Беларусь. Экономические и социальные эффекты развития атомной энергетики.

    реферат [33,8 K], добавлен 07.11.2011

  • Мировой опыт развития атомной энергетики. Испытание атомной бомбы. Пуск первой АЭС опытно-промышленного назначения. Чернобыльская авария и ее ущерб людям и народному хозяйству страны. Масштабное строительство атомных станций. Ресурсы атомной энергетики.

    курсовая работа [43,7 K], добавлен 15.08.2011

  • Принцип работы и классификация атомных электростанций по различным признакам. Объемы выработки электроэнергии на российских АЭС. Оценка выработки электрической и тепловой энергии на примере Билибинской атомной станции как одной из крупнейших в России АЭС.

    контрольная работа [734,2 K], добавлен 22.01.2015

  • Состояние атомной энергетики. Особенности размещения атомной энергетики. Долгосрочные прогнозы. Оценка потенциальных возможностей атомной энергетики. Двухэтапное развитие атомной энергетики. Долгосрочные прогнозы. Варианты структуры атомной энергетики.

    курсовая работа [180,7 K], добавлен 13.07.2008

  • Атомная энергия. Мощность Преобразование энергии. Ее виды и источники. История развития атомной энергетики. Радиационная безопасность атомных станций с опредленными типами реакторов. Модернизация и продление сроков эксплуатации энергоблоков АЭС.

    реферат [203,5 K], добавлен 24.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.