Трехфазный ток. Принцип действия передачи энергии на расстояние

Схемы соединений трехфазных цепей: "звезда", "треугольник". Соотношение между линейными и фазными токами и напряжениями. История и способы передачи электрической энергии на расстоянии без использования токопроводящих элементов в электрической цепи.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 01.03.2015
Размер файла 88,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Колледж космического машиностроения и технологии

Реферат на тему:

Трехфазный ток. Принцип действия передачи энергии на расстоянии

Выполнил студент группы к16п

Кривошеев Денис

Проверил преподаватель физики

Черников В.В.

Королев 2015 г

Введение

Трёхфазная система электроснабжения -- частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2р/3 (120°).

Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М.О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.

Описание

Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники -- носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C.

Распространённые обозначения фазных проводов:

Россия, EC (выше 1000 В)

Россия, ЕС (ниже 1000 В)

Германия

Дания

А

L1

L1

R

B

L2

L2

S

C

L3

L3

T

Изображение течения токов по симметричной трехфазной цепи с соединением типа «Звезда»

Преимущества

· Экономичность.

· Экономичность передачи электроэнергии на значительные расстояния.

· Меньшая материалоёмкость 3-фазных трансформаторов.

· Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).

· Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.

· Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.

· Возможность получения в одной установке двух рабочих напряжений -- фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».

· Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.

Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.

Схемы соединений трехфазных цепей

«Звезда»

Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным. трехфазный ток энергия расстояние

Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет -- трёхпроводной.

Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.

Линейные и фазные величины

Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Несложно показать, что линейное напряжение сдвинуто по фазе на относительно фазных:

Мощность трехфазового тока

Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:

Последствия отгорания (обрыва) нулевого провода в трехфазных сетях

При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.

Проблема гармоник, кратных третьей

Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.

Треугольник

Треугольник -- такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.

Соотношение между линейными и фазными токами и напряжениями

Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

Мощность трёхфазного тока

Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:

Распространённые стандарты напряжений

Страна (регион)

Частота, Гц

Напряжение (фазное/линейное), вольт

РФ (c 2004 года на основе ГОСТ 29322-92(2004))

50

230,
400 (Ток промышленной частоты)

Страны ЕС

50

230/400

Япония

50 (60)

120/208

США

60

120/208,
277/480

240 (только треугольник)

Принцип действия передачи энергии на расстоянии

Принцип действия передачи энергии на расстоянии -- способ передачи электрической энергии без использования токопроводящих элементов в электрической цепи. К 2011 году имели место успешные опыты с передачей энергии мощностью порядка десятков киловатт в микроволновом диапазоне с КПД около 40 % -- в 1975 в Goldstone, Калифорния и в 1997 в Grand Bassin на острове Реюньон (дальность порядка километра, исследования в области энергоснабжения посёлка без прокладки кабельной электросети). Технологические принципы такой передачи включают в себя индукционный (на малых расстояниях и относительно малых мощностях), резонансный (используется в бесконтактных смарт-картах и чипах RFID) и направленный электромагнитный для относительно больших расстояний и мощностей (в диапазоне от ультрафиолета до микроволн).

История передачи энергии на расстоянии

· 1820: Андре Мари Ампер открыл закон (после названный в честь открывателя, законом Ампера), показывающий, что электрический ток производит магнитное поле.

· 1831: Майкл Фарадей открыл закон индукции, важный базовый закон электромагнетизма.

· 1864: Джеймс Максвелл систематизировал все предыдущие наблюдения, эксперименты и уравнения по электричеству, магнетизму и оптике в последовательную теорию и строгое математическое описание поведения электромагнитного поля.

· 1888: Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля» Герца был СВЧ или УВЧ искровой передатчик «радиоволн».

· 1891: Никола Тесла улучшил передатчик волн Герца радиочастотного энергоснабжения в своём патенте No. 454,622, «Система электрического освещения».

· 1893: Никола Тесла демонстрирует беспроводное освещение люминесцентными лампами в проекте для Колумбовской всемирной выставки в Чикаго.

· 1894: Никола Тесла зажигает без проводов фосфорную лампу накаливания в лаборатории на Пятой авеню, а позже в лаборатории на Хаустон-стрит в Нью-Йорке, с помощью «электродинамической индукции», то есть посредством беспроводной резонансной взаимоиндукции.

· 1894: Джагдиш Чандра Боше дистанционно воспламеняет порох и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов.

· 1895: А. С. Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества 25 апреля(7 мая) 1895 года

· 1895: Боше передаёт сигнал на расстояние около одной мили.

· 1896: Гульельмо Маркони подает заявку на изобретение радио 2 июня 1896 года.

· 1896: Тесла передаёт сигнал на расстояние около 48 километров.

· 1897: Гульельмо Маркони передает текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.

· 1897: Тесла регистрирует первый из своих патентов по применению беспроводной передачи.

· 1899: В Колорадо Спрингс Тесла пишет: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха».

· 1900: Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.

· 1901: Маркони передаёт сигнал через Атлантический океан, используя аппарат Тесла.

· 1902: Тесла против Реджинальда Фессендена: конфликт американского патента No. 21,701 «Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом».

· 1904: На Всемирной выставке в Сент-Луисе предлагается премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м).

· 1917: Разрушена Башня Ворденклиф, построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.

· 1926: Синтаро Уда и Хидэцугу Яги публикуют первую статью «о регулируемом направленном канале связи с высоким усилением», хорошо известном как «антенна Яги-Уда» или антенна «волновой канал».

· 1961: Уильям Браун публикует статью по исследованию возможности передачи энергии посредством микроволн.

· 1964: Уильям Браун и Уолтер Кроникт демонстрируют на канале CBS News модель вертолета, получающего всю необходимую ему энергию от микроволнового луча.

· 1968: Питер Глейзер предлагает беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч». Это считается первым описанием орбитальной энергетической системы.

· 1973: Первая в мире пассивная система RFID продемонстрирована в Лос-Аламосской Национальной лаборатории.

· 1975: Комплекс дальней космической связи Голдстоун проводит эксперименты по передаче мощности в десятки киловатт.

· 2007: Исследовательская группа под руководством профессора Марина Солячича из Массачусетского технологического института передала беспроводным способом на расстояние 2 м мощность, достаточную для свечения лампочки 60 вт, с к.п.д. 40 %, с помощью двух катушек диаметром 60 см

· 2008: Фирма Bombardier предлагает новый продукт для беспроводной передачи PRIMOVE, мощная система для применения в трамваях и двигателях малотоннажной железной дороги.

· 2008: Корпорация Intel воспроизводит опыты Никола Тесла 1894 года и группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с к.п.д. 75 %.

· 2009: Консорциум заинтересованных компаний, названный Wireless Power Consortium, объявил о скором завершении разработки нового промышленного стандарта для маломощных индукционных зарядных устройств.

· 2009: Представлен промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом. Это изделие было разработано норвежской компанией Wireless Power & Communication.

· 2009: Haier Group представила первый в мире полностью беспроводной LCD-телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI).

Технология

Ультразвуковой метод

Изобретение студентов университета Пенсильвании. Впервые широкой публике установка была представлена на выставке The All Things Digital (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, используется приёмник и передатчик. Передатчик излучает ультразвук, приёмник, в свою очередь, преобразует слышимое в электричество. На момент презентации расстояние передачи достигает 7-10 метров, необходима прямая видимость приёмника и передатчика. Из известных характеристик -- передаваемое напряжение достигает 8 вольт, однако не сообщается получаемая сила тока. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии на животных.

Метод электромагнитной индукции

Техника беспроводной передачи методом электромагнитной индукции использует ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создает переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, все большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция. Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щеток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приемник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приемник настроены на одну частоту. Производительность может быть улучшена ещё больше путем изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приемная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких, как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приемника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi.

Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких, как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющемуся беспроводным передатчиком электрической энергии.

Электростатическая индукция

Электростатическая или емкостная связь представляет собой прохождение электроэнергии через диэлектрик. На практике это градиент электрического поля или дифференциальная емкость между двумя или более изолированными клеммами, пластинами, электродами, или узлами, возвышающимися над проводящей поверхностью. Электрическое поле создается за счет заряда пластин переменным током высокой частоты и высокого потенциала. Емкость между двумя электродами и питаемым устройством образует разницу потенциалов.

Электрическая энергия, передаваемая с помощью электростатической индукции, может быть использована в приемном устройстве, например, таком, как беспроводные лампы. Тесла продемонстрировал беспроводное питание ламп освещения энергией, передаваемой переменным электрическим полем.

«Вместо того чтобы полагаться на электродинамическую индукцию для питания лампы на расстоянии, идеальным способом освещения зала или комнаты будет создание таких условий, при которых осветительный прибор можно было бы переносить и размещать в любом месте, и он работал, независимо от того, где он находится, и без проводного подключения. Я сумел продемонстрировать это, создав в помещении мощное переменное электрическое поле высокой частоты. Для этой цели я прикрепил изолированную металлическую пластину к потолку и подключил её к одной клемме индукционной катушки, другая клемма была заземлена. В другом случае я подключал две пластины, каждую к разным концам индукционной катушки, тщательно подобрав их размеры. Газоразрядная лампа может перемещаться в любое место помещения между металлическими пластинами или даже на некоторое расстояние за ними, излучая при этом свет без перерыва».

Принцип электростатической индукции применим к методу беспроводной передачи. «В случаях, когда требуется передача небольшого количества энергии, необходимость в расположении электродов на возвышении снижается, особенно в случае токов высокой частоты, когда достаточное количество энергии может быть получено терминалом путем электростатической индукции из верхних слоев воздуха, создаваемой передающим терминалом».

Микроволновое излучение

Радиоволновую передачу энергии можно сделать более направленной, значительно увеличив расстояние эффективной передачи энергии путем уменьшения длины волны электромагнитного излучения, как правило, до микроволнового диапазона. Для обратного преобразования микроволновой энергии в электричество может быть использована ректенна, эффективность преобразования энергии которой превышает 95 %. Данный способ был предложен для передачи энергии с орбитальных солнечных электростанций на Землю и питания космических кораблей, покидающих земную орбиту.

Сложностью в создании энергетического микроволнового луча является то, что для использования его в космических программах из-за дифракции, ограничивающей направленность антенны, необходима диафрагма большого размера. Например, согласно исследованию НАСА 1978 года, для микроволнового луча частотой 2,45 ГГц понадобится передающая антенна диаметром в 1 км, а приемной ректенны диаметром в 10 км. Эти размеры могут быть снижены путем использования более коротких длин волн, однако короткие волны могут поглощаться атмосферой, а также блокироваться дождем или каплями воды. Из-за «проклятия узкого пучка» невозможно сузить луч, объединяя пучки от нескольких меньших спутников без пропорциональной потери в мощности. Для применения на земле антенна диаметром 10 км позволит достичь значительного уровня мощности при сохранении низкой плотности пучка, что важно по соображениям безопасности для человека и окружающей среды. Безопасный для человека уровень плотности мощности составляет 1 мВт/кв. см, что на площади круга диаметром 10 км соответствует мощности в 750 МВт. Этот уровень соответствует мощности современных электростанций.

После Второй мировой войны, когда началось развитие мощных СВЧ-излучателей, известных под названием магнетрон, идея использования микроволн для передачи энергии также была исследована.

В 1964 году был продемонстрирован миниатюрный вертолет, к которому энергия передавалась с помощью СВЧ-излучения.

Японский исследователь Хидэцугу Яги также исследовал беспроводную передачу энергии с помощью созданной им направленной антенной решетки.

В феврале 1926 года им была опубликована работа об устройстве, известном сейчас как антенна Яги. Хотя она оказалась неэффективной для передачи энергии, сегодня её широко используют в радиовещании и беспроводных телекоммуникациях из-за её превосходных рабочих характеристик.

Беспроводная передача энергии высокой мощности с использованием микроволн подтверждена экспериментально. Опыты по передаче десятков киловатт электроэнергии проводились в Голдстоуне, штат Калифорния, в 1975 году и в 1997 году в Гранд Бассине на острове Реюнион. В ходе экспериментов достигнута передача энергии на расстояние порядка одного километра.

Экспериментами по беспроводной передаче энергии с помощью СВЧ-излучения занимался также академик П.Л.Капица.

Лазерный метод

В том случае, если длина волны электромагнитного излучения приближается к видимой области спектра (от 10 мкм до 10 нм), энергию можно передать путем её преобразования в луч лазера, который затем может быть направлен на фотоэлемент приемника.

Лазерная передача энергии по сравнению с другими методами беспроводной передачи обладает рядом преимуществ:

· Монохроматическая световая волна, обладающая малым углом расходимости, позволяет узкому пучку эффективно передавать энергию на большие расстояния.

· Компактный размер твердотельного лазера -- фотоэлектрического полупроводникового диода -- удобен для небольших изделий.

· Лазер не создает радиочастотных помех для существующих средств связи, таких, как Wi-Fi и сотовые телефоны.

· Контроль доступа, так как только приемники, освещенные лазерным лучом, получают электроэнергию.

У данного метода есть и ряд недостатков:

· Преобразование низкочастотного электромагнитного излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 %%, хотя эффективность преобразования монохроматического света значительно выше, чем эффективность солнечных панелей.

· Потери в атмосфере.

· Как и при микроволновой передаче, этот метод требует прямой видимости между передатчиком и приемником.

Технология передачи мощности с помощью лазера ранее, в основном, исследовалась при разработке новых систем вооружений и в аэрокосмической промышленности, а в настоящее время разрабатывается для коммерческой и потребительской электроники в маломощных устройствах. Системы беспроводной передачи энергии с применением в потребительских целях должны удовлетворять требованиям лазерной безопасности стандарта IEC 60825. Для лучшего понимания лазерных систем следует принимать во внимание то, что распространение лазерного луча гораздо в меньшей степени зависит от дифракционных ограничений, как пространственное и спектральное согласования характеристик лазеров позволяют увеличить рабочую мощность и дистанцию, как длина волны влияет на фокусировку.

Драйденский Летно-исследовательского центр НАСА продемонстрировал полет легкого беспилотного самолета-модели, питаемого лазерным лучом. Это доказало возможность периодической подзарядки посредством лазерной системы без необходимости приземления летательного аппарата.

Кроме того, Litehouse DEV (подразделение НАСА) совместно с Университетом штата Мэриленд разрабатывает лазерную систему питания небольших БПЛА, безопасную для глаз.

С 2006 года компания PowerBeam, изобретшая лазерную технологию, безопасную для глаз, также разрабатывает готовые для коммерческого применения узлы для различных потребительских и промышленных электронных устройств.

В 2009 году в соревновании НАСА по передаче энергии лазером первое место и приз в $900 тыс. получила компания LaserMotive, продемонстрировав собственную разработку, способную действовать на расстоянии в один километр. Лазер победителя смог передать мощность в 500 Вт на расстояние в 1 км с 10 % КПД.

Электропроводность

Однопроводная электрическая система SWER (Single Wire with Earth Return) основывается на токе земли и одном изолированном проводе. В аварийных случаяхвысоковольтные линии постоянного тока могут работать в режиме SWER. Замена изолированного провода на атмосферную обратную связь для передачи мощного высокочастотного переменного тока стала одним из методов беспроводной передачи электроэнергии. Кроме того, исследовалась возможность беспроводной передачи электроэнергии только через землю.

Низкочастотный переменный ток может быть передан с низкими потерями по земле, поскольку общее сопротивление земли значительно меньше, чем 1 Ом. Электрическая индукция возникает преимущественно из-за электропроводимости океанов, металлических рудных тел и подобных подземных структур. Электрическая индукция также вызывается электростатической индукцией диэлектрических областей, таких, как залежи кварцевого песка и прочих непроводящих минералов.

Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст. Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях над уровнем моря[ и благодаря потоку ионов, то есть электрической проводимости через ионизированную область, расположенную на высоте выше 5 км. Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через неё и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря емкостному плазменному разряду в ионизированной атмосфере.

Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывалась как коммерческий проект по трансатлантической беспроводной телефонии и стала реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования.

Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4.5 миль (7.2 км).]

Глобальная система передачи электроэнергии без проводов, так называемая „Всемирная беспроводная система“, основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита, возникшего в результате „короткого замыкания“ между заряженной атмосферой и землей.

Всемирная беспроводная система

Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успех можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приемниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения её полной эксклюзивности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учетом физических свойств нашей планеты».

Одним из условий создания всемирной беспроводной системы является строительство резонансных приемников. Заземленный винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приемной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732, Аппарат для передачи электрической энергии, 18 января 1902 г.). Тесла предложил установить более тридцати приемо-передающих станций по всему миру. В этой системе приемная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приемной.

Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействовало объединению электрических генераторов в глобальном масштабе

Заключение

Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.

Литература

http://radioskot.ru/publ/bp/peredacha_ehnergii_na_rasstojanie/7-1-0-239

http://www.bibliotekar.ru/spravochnik-185-tehnika/31.htm

http://knowledge.allbest.ru/physics/2c0b65635b3bd68b4c43a89421306c360.htm

Размещено на Allbest.ru


Подобные документы

  • Основные элементы трехфазных электрических цепей. Трехфазный источник электрической энергии. Анализ электрических цепей при соединении трехфазного источника и приемника по схемам "звезда" с нулевым проводом и "треугольник". Расчет и измерение мощности.

    презентация [742,4 K], добавлен 25.07.2013

  • Схемы соединений трехфазных цепей: звезда и треугольник. Рассмотрение соединения звезда\звезда, звезда\треугольник с нулевым проводом (без нулевого), симметричный и несимметричный режим. Аварийные режимы в трехфазных цепях (обрыв линейного провода, фазы).

    контрольная работа [497,0 K], добавлен 19.01.2011

  • Основные элементы трехфазных электрических цепей, а также напряжение между фазными выводами. Анализ электрических цепей при соединении трехфазного источника и приемника по схеме "звезда" с нулевым проводом. Соединение приемника по схеме "треугольник".

    презентация [742,4 K], добавлен 22.09.2013

  • Анализ трехфазной цепи при включении в нее приемников по схеме "треугольник". Расчет двухконтурной электрической цепи. Метод эквивалентных преобразований для многоконтурной электрической цепи. Метод применения законов Кирхгофа для электрической цепи.

    курсовая работа [310,7 K], добавлен 22.10.2013

  • Схема замещения электрической цепи и положительные направления токов линий и фаз. Баланс мощностей для рассчитанной фазы. Активная, реактивная и полная мощность 3-х фазной цепи. Соотношения между линейными и фазными величинами в симметричной системе.

    контрольная работа [278,2 K], добавлен 03.04.2009

  • Эквивалентные преобразования электрической цепи с резисторными элементами в цепь с Rэ. Последовательное соединение элементов. Эквивалентное преобразование соединений "треугольник" в "звезда" и обратно. Расчет схемы, относящейся к смешанному соединению.

    курсовая работа [473,5 K], добавлен 01.06.2014

  • Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

    методичка [721,6 K], добавлен 16.05.2010

  • Общая характеристика процесса возникновения шаровой молнии как физического явления, анализ перспектив ее использования в качестве источника электрической энергии. Описание технологий передачи энергии на расстояние путем использования шаровой молнии.

    реферат [306,9 K], добавлен 19.12.2010

  • Общая характеристика трёхфазных систем при соединении фаз треугольником, их активная мощность. Особенности построения векторных диаграмма при симметричной и несимметричной нагрузке фаз. Проверка соотношения между линейными и фазными напряжениями и токами.

    лабораторная работа [141,4 K], добавлен 12.01.2010

  • Режим работы симметричного и несимметричного потребителей электрической энергии в трехфазной цепи при соединении "звездой" при наличии и отсутствии нейтрального провода. Описание виртуальной лабораторной установки. Схема замещения электрических цепей.

    контрольная работа [770,7 K], добавлен 03.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.