Машины постоянного тока специального назначения

Принципы действия электромашинного усилителя, его применение в системах автоматики. Отношение мощности в поперечной цепи к мощности управления. Расположение обмоток ЭМУ на статоре. Назначение тахогенератора и бесконтактного двигателя постоянного тока.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 15.02.2015
Размер файла 2,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Машины постоянного тока специального назначения

Электромашинный усилитель (ЭМУ) представляет собой электрическую машину, работающую в генераторном режиме и предназначенную для усиления электрических сигналов. Электромашинные усилители применяются в системах автоматики. Простейший ЭМУ -- это генератор постоянного тока независимого возбуждения (см. рис. 28.2, а). Так как напряжение на выходе генератора зависит от тока возбуждения (см. рис. 28.2, б), то, изменяя ток возбуждения, можно управлять напряжением на выходе генератора. Следовательно, сравнительно небольшой мощностью в цепи обмотки возбуждения можно управлять значительной мощностью в цепи якоря.

Электромашинные усилители, выполненные по принципу генератора независимого возбуждения, не нашли широкого применения, так как они не могут обеспечить достаточно большого коэффициента усиления по мощности (не более 80--100), представляющего собой отношение мощности на выходе усилителя к мощности на входе обмотки управления.

Наибольшее распространение в автоматике получили электромашинные усилители поперечного поля. В отличие от обычного генератора постоянного тока в этом ЭМУ основным рабочим потоком является магнитный поток, создаваемый током обмотки якоря, -- поперечный поток реакции якоря (см. рис. 26.4, б).

На коллекторе ЭМУ установлено два комплекта щеток: один комплект -- (рис. 30.1, а) -- расположен по поперечной оси главных полюсов, т. е. на геометрической нейтрали, а другой -- по продольной оси главных, полюсов. Щетки замкнуты накоротко, а к щеткам подключена рабочая цепь ЭМУ.

Помимо обмотки якоря усилитель имеет одну или несколько обмоток управления , компенсационную обмотку (ОК), поперечную подмагничивающую обмотку (ОП) и обмотку добавочных полюсов (ОД). Якорь усилителя приводится во вращение электродвигателем.

Если к одной из обмоток управления подвести напряжение , то в этой обмотке появится ток управления , который создает МДС обмотки управления . Эта МДС, в свою очередь, создает магнитный поток , который наведет в обмотке якоря в цепи щеток ЭДС . Электродвижущая сила невелика, но так как щетки замкнуты накоротко, то ЭДС вызовет значительный ток . Ток в обмотке якоря создаст МДС и магнитный поток , который направлен по поперечной оси главных полюсов, т. е. по геометрической нейтрали, и неподвижен в пространстве. В обмотке якоря, вращающейся в неподвижном потоке , наводится ЭДС , снимаемая с продольных щеток .

Таким образом, небольшая мощность обмотки управления проходит две ступени усиления: сначала эта мощность усиливается на ступени «цепь управления -- поперечная цепь», а затем на ступени «поперечная цепь -- продольная (рабочая) цепь».

Усиление мощности на каждой ступени характеризуется коэффициентом усиления, который на ступени «цепь управления -- поперечная цепь» определяется отношением мощности в поперечной цепи к мощности управления :

. (30.1)

Коэффициент усиления на ступени «поперечная цепь -- продольная (рабочая) цепь» определяется отношением мощностей в этих цепях:

, (30.2)

где -- мощность в рабочей цепи усилителя, т. е. в цепи щеток .

Рис. 30.1 ЭМУ поперечного поля:

-- принципиальная схема;

-- внешние характеристики

Общий коэффициент усиления ЭМУ равен произведению частных коэффициентов усиления:

. (30.3)

Коэффициент усиления электромашинных усилителей может достигать 2000--20 000.

Следует помнить, что мощность на выходе ЭМУ представляет собой преобразованную механическую мощность приводного электродвигателя. Значение этой мощности, которое может достигать более 20 кВт, управляется небольшой мощностью управления (обычно 0,1--1,0 Вт).

Обмотка добавочных полюсов (ОД) служит для улучшения коммутации на продольных щетках . Поперечная подмагничивающая обмотка (ОП) усиливает магнитный поток по поперечной оси, что позволяет уменьшить ток в цепи щеток , следовательно, улучшить коммутацию на этих щетках (в ЭМУ малой мощности эта обмотка отсутствует).

Компенсационная обмотка (ОК), наличие которой в ЭМУ обязательно, устраняет размагничивающее влияние реакции якоря по продольной оси. Дело в том, что ток рабочей цепи ЭМУ (ток нагрузки) создает МДС по продольной оси , направленную навстречу МДС обмотки управления . Эта МДС намного меньше МДС , поэтому даже при небольшой нагрузке усилителя размагничивающее влияние реакции якоря по продольной оси настолько велико, что усилитель размагничивается и напряжение на его выводах падает до нуля. Для устранения этого явления на статоре ЭМУ располагают компенсационную обмотку, включенную последовательно в рабочую цепь якоря. С появлением тока в рабочей цепи возникает МДС компенсационной обмотки , направленная по продольной оси встречно МДС реакции якоря . Этим устраняется (компенсируется) размагничивающее влияние реакции якоря по продольной оси. Для полной компенсации необходимо, чтобы МДС и были равны, так как недокомпенсация или перекомпенсация оказывает значительное влияние на магнитный поток , а следовательно, и на свойства ЭМУ. Однако рассчитать компенсационную обмотку с требуемой точностью практически невозможно, что ведет к необходимости опытной настройки требуемого значения МДС посредством реостата , шунтирующего компенсационную обмотку.

Электромашинные усилители поперечного поля выполняют двухполюсными, при этом каждый из главных полюсов расщепляют на две части 1, между которыми располагают добавочные полюса 2 (рис. 30.2). Обмотки управления 4 выполняют сосредоточенными в виде полюсных катушек, надетых на главные полюса, что же касается компенсационной обмотки 3, то ее делают распределенной, используя для этого пазы в полюсных наконечниках главных полюсов. Этим достигается компенсация продольной реакции якоря по всему периметру статора.

электромашинный усилитель цепь тахогенератор

Рис. 30.2. Расположение обмоток ЭМУ на статоре

При мощности до нескольких киловатт ЭМУ выполняют в общем корпусе с приводным двигателем постоянного или переменного тока. При значительной мощности ЭМУ и двигатель выполняют раздельно и монтируют на общей раме.

Рабочие свойства ЭМУ в значительной степени определяются его внешней характеристикой при и . Напряжение на выходе усилителя

, (30-4)

где сумма электрических сопротивлений в продольной цепи якоря, Ом, включающая в себя сопротивления обмотки якоря , добавочных полюсов , компенсационной обмотки и щеточного контакта .

Ввиду того, что магнитная цепь усилителя не насыщена, напряжение является линейной функцией тока нагрузки , т. е. внешняя характеристика ЭМУ представляет собой практически прямую линию (рис. 30.1, б).

Угол наклона внешней характеристики к оси абсцисс (жесткость характеристики) зависит от степени компенсации реакции якоря. При полной компенсации МДС компенсационной обмотки равна МДС реакции якоря по продольной оси . В этом случае внешняя характеристика получается достаточно жесткой (кривая 3), так как уменьшение напряжения при увеличении тока нагрузки происходит лишь за счет увеличения падения напряжения в цепи якоря по продольной оси .

При недокомпенсации внешняя характеристика получается менее жесткой (кривая 4). Объясняется это тем, что при недокомпенсации МДС , возрастая с увеличением тока , значительно ослабляет магнитный поток обмотки управления , что ведет к заметному уменьшению напряжения на выходе ЭМУ.

Если в усилителе настроить небольшую перекомпенсацию так, чтобы МДС полностью скомпенсировала не только реакцию якоря по продольной оси, но и падение напряжения , то внешняя характеристика усилителя становится абсолютно жесткой и располагается параллельно оси абсцисс (кривая 2). В этом случае напряжение на выходе ЭМУ остается неизменным во всем диапазоне изменения нагрузки.

При значительной перекомпенсации внешняя характеристика (кривая 1) приобретает восходящий характер, так как МДС не только компенсирует , но и создает дополнительный продольный поток, который, накладываясь на магнитный поток управления , вызывает увеличение ЭДС . Работа усилителя с перекомпенсацией становится неустойчивой, так как возникает опасность произвольного самовозбуждения ЭМУ, при котором увеличение напряжения на выходе усилителя вызывает рост тока нагрузки, что ведет к дальнейшему увеличению напряжения, т. е. происходит неограниченное увеличение тока нагрузки. Обычно в усилителе настраивают небольшую недокомпенсацию, при которой увеличение напряжения при уменьшении тока от номинального до нуля составляло бы 12--20%.

Тахогенератор постоянного тока

Тахогенераторы постоянного тока служат для измерения частоты вращения по значению выходного напряжения, а также для получения электрических сигналов, пропорциональных частоте вращения вала в схемах автоматического регулирования. Тахогенератор постоянного тока представляет собой генератор малой мощности с электромагнитным независимым возбуждением (рис. 30.3, а) или с возбуждением постоянными магнитами.

Ввиду того что при постоянном токе возбуждения магнитный поток Ф практически не зависит от нагрузки, выходная ЭДС тахогенератора прямо пропорциональна частоте вращения:

, (30.5)

где .

Формула (30.5) справедлива и для тахогенератора с возбуждением постоянными магнитами, где . Для измерения частоты вращения тахогенератором вал последнего механически соединяют с валом механизма, частоту вращения которого требуется измерить. На выводы тахогенератора подключают измерительный прибор со шкалой, градуированной в единицах частоты вращения.

Точность работы тахогенератора определяется его выходной характеристикой, представляющей собой зависимость выходного напряжения от частоты вращения при неизменном значении сопротивления нагрузки. Наиболее точная работа тахогенератора соответствует прямолинейной выходной характеристике (рис. 30.3, б, прямая 1).

Рис. 30.3. Принципиальная схема , выходная характеристика тахогенератора постоянного тока

Однако в реальных тахогенераторах выходная характеристика не прямолинейна (график 2) и к тому же она выходит не из начала осей координат. Основная причина криволинейности характеристики -- реакция якоря, поэтому уменьшению криволинейности этой характеристики способствует включение на выход тахогенератора приборов с большим внутренним сопротивлением, так как при уменьшении тока якоря ослабляется действие реакции якоря. В современных тахогенераторах отклонение выходной характеристики от прямолинейной составляет от 0,5 до 3%.

Падение напряжения в щеточном контакте создает в тахогенераторе зону нечувствительности. Это диапазон частот вращения от 0 до , в котором напряжение на выходе генератора равно нулю. Граница зоны нечувствительности определяется выражением

. (30.6)

Широкое применение получили тахогенераторы постоянного тока, возбуждаемые постоянными магнитами. Эти тахогенераторы не имеют обмотки возбуждения, и поэтому они проще по конструкции и имеют меньшие габариты.

Бесконтактный двигатель постоянного тока

С целью улучшения свойств двигателей постоянного тока были созданы двигатели с бесконтактным коммутатором, называемые бесконтактными двигателями постоянного тока (БДПТ). Отличие БДПТ от коллекторных двигателей традиционной конструкции состоит в том, что у них щеточно-коллекторный узел заменен полупроводниковым коммутатором (инвертором), управляемым сигналами, поступающими с бесконтактного датчика положения ротора. Рабочая обмотка двигателя -- обмотка якоря -- расположена на сердечнике статора, а постоянный магнит -- на роторе.

Вал двигателя Д (рис. 30.4, а) механически соединен с датчиком положения ротора (ДПР), сигнал от которого поступает в блок коммутатора (БК). Подключение секций обмотки якоря к источнику постоянного тока происходит через элементы блока коммутатора (БК). Назначение ДПР -- выдавать управляющий сигнал в блок коммутатора в соответствии с положением полюсов постоянного магнита относительно секций обмотки якоря.

рис. 30.4. Бесконтактный двигатель постоянного тока:

-- блок-схема, -- магнитная система

В качестве датчиков положения ротора применяют чувствительные различные бесконтактные элементы с минимальными размерами и потребляемой мощностью и большой кратностью минимального и максимального сигналов, чтобы не вызывать нарушений в работе блока коммутатора. Чувствительные элементы ДПР должны надежно работать при внешних воздействиях (температура, влажность, вибрации и т. п.), на которые рассчитан двигатель. Такие свойства присущи ряду чувствительных элементов (датчиков): индуктивных, трансформаторных, магнитодиодов и т. п. Наиболее целесообразно использовать датчики ЭДС Хота (рис. 30.5), представляющие собой тонкую полупроводниковую пластину с нанесенными на ней контактны-

ми площадками, к которым припаяны выводы /--2, подключенные к источнику напряжения , и выводы 3--4, с которых снимают выходной сигнал . Если в цепи 1--2 проходит ток , а датчик находится в магнитном поле, вектор индукции В которого перпендикулярен плоскости пластины датчика, то в датчике наводится ЭДС и на выводах 3--4 появляется напряжение . Значение ЭДС зависит от тока и магнитной индукции В, а полярность -- от направления тока в цепи 1--2 и направления вектора магнитной индукции В.

Рис. 30.5. Датчик ЭДС Холла

Рассмотрим работу бесконтактного двигателя постоянного тока, для управления которым применяют датчики Холла и коммутатор, выполненный на транзисторах VТ1--VТ4 (рис. 30.6). Четыре обмотки (фазы) двигателя расположены на явно выраженных полюсах шихтованного сердечника якоря (см. рис. 30.4, б). Датчики Холла ДХ1 и ДХ2 установлены в пазах полюсных наконечников двух смежных полюсов. Силовые транзисторы VТ1--VТ4 работают в релейном (ключевом) режиме (рис. 30.6). Сигнал на открытие транзистора поступает от соответствующего датчика Холла (датчика положения ротора). Питание датчиков Холла (выводы 1--2) осуществляется от источника напряжением .

Рис. 30.6. Принципиальная схема БДПТ

Каждая обмотка (фаза) выполнена из двух катушек, расположенных на противолежащих полюсах сердечника статора и соединенных последовательно (рис. 30.7). Если по какой-либо из обмоток (фаз) статора проходит ток от начала Н1--Н4 к концу К1--К4, то полюсы сердечника статора приобретают полярность соответственно S и N.

Рис. 30.7. Расположение обмоток фаз на полюсах статора БДПТ

При положении ротора, показанном на рис. 30.6, в зоне магнитного полюса N находится датчик ДХ1. При этом на выходе датчика появляется сигнал, при котором транзистор VТ2 переходит в открытое состояние. В обмотке (фаза) статора появляется ток , протекающий от Н2 к К2. При этом полюсы статора 2 и 4 приобретают полярность S и N (рис. 30.8, ). В результате взаимодействия магнитных полей статора и ротора (постоянного магнита) появляется электромагнитный момент М, вращающий ротор. После поворота ротора относительно оси полюсов статора 1--3 на некоторый угол а против часовой стрелки датчик ДХ2 окажется в зоне магнитного полюса ротора S, при этом по сигналу с датчика ДХ2 включается транзистор VТ3. В фазной катушке возникает ток и полюсы 3 и / приобретают полярность S и N. При этом магнитный поток статора Ф создается совместным действием МДС обмоток фаз и . Вектор этого потока повернут относительно оси 2--4 на угол 450 (рис. 30.8, б). Ротор, продолжая вращение, занимает положение по оси полюсов статора 2--4. При этом датчик ДХ1 попадает в межполюсное пространство ротора, а датчик ДХ2 останется в зоне полюса S ротора. В результате транзистор VТ2 закрывается, транзистор VТЗ останется открытым и магнитный поток Ф, создаваемый МДС обмотки фазы , поворачивается относительно оси полюсов 2--4 еще на 450 (рис. 30.8, в). После того как ось вращающегося ротора пересечет ось полюсов статора 2--4, датчики ДХ1 и ДХ2 окажутся в зоне полюса ротора S, что приведет к включению транзисторов VТЗ и VТ4. Дальнейшую работу элементов схемы БДПТ (рис. 30.8) до завершения вектором потока Ф одного оборота проследим по табл. 30.1 и рис. 30.8, а -- з.

Рис. 30.8. Магнитное поле статора в четырехполюсном БДПТ

На рис. 30.9 показано устройство рассмотренного БДПТ. Датчики Холла 3 размещены в специальных пазах полюсных наконечников 1 сердечника статора.

Рис. 30.9. Устройство БДПТ

Постоянный магнит 2 не имеет центрального отверстия для посадки на вал, он закладывается в тонкостенную гильзу и закрывается привариваемыми фланцами двух полуосей. Такая конструкция ротора позволяет избежать выполнения центрального отверстия в постоянном магните, что часто является причиной брака (трещины, сколы и т. п.). Блок коммутатора (БК) расположен на панелях 5, отделен от двигателя перегородкой 4 и закрыт металлическим колпаком 6, через который выведены провода 7 для подключения двигателя в сети постоянного тока. Подобная конструкция применена в БДПТ полезной мощностью от 1 до 120 Вт.

Таблица 30.1

Позиция на рис. 30.8

а

б

в

г

е

ж

3

а

Открыты транзисторы

VТ2

VТ2, VТЗ

VТЗ

VТЗ, VТ4

VТ4

VТ4, VТ1

VТ1

VТ1 VТ2

VТ2

Ток проходит по фазным катушкам

,

,

,

,

Угол поворота вектора потока статора, град

0

45

90

135

180

225

270

315

360

Изменение направления вращения (реверс) двигателя осуществляется изменением полярности напряжения в токовой цепи датчиков Холла. Изменение полярности напряжения U на входе двигателя недопустимо, так как при этом прекращается работа блока коммутатора.

Коэффициент полезного действия БДПТ по сравнению с коллекторными двигателями постоянного тока выше, что объясняется отсутствием щеточно-коллекторного узла, а значит, электрических потерь в щеточном контакте и механических потерь в коллекторе.

К достоинствам БДПТ относятся также высокая надежность и долговечность, что объясняется отсутствием у них щеточно-коллекторного узла, т. е. их бесконтактностью. Двигатели могут работать в условиях широкого диапазона температур окружающей среды, в вакууме, в средах с большой влажностью и т. п., где применение коллекторных двигателей недопустимо из-за неработоспособности щеточно-коллекторного узла.

Недостаток БДПТ -- повышенная стоимость, обусловленная наличием полупроводникового блока коммутатора, чувствительных элементов (датчиков ЭДС Холла) и постоянного магнита.

Исполнительные двигатели постоянного тока

Исполнительные двигатели постоянного тока, так же как исполнительные асинхронные двигатели (см. § 17.4), применяются в системах автоматики для преобразования электрического сигнала в механическое перемещение. Помимо обычных требований, предъявляемых к электродвигателям общего назначения, к исполнительным двигателям предъявляется ряд специфических требований, из которых основными являются отсутствие самохода и малоинерционность (см. § 17.4).

Почти все исполнительные двигатели (исключение составляют лишь двигатели с постоянными магнитами) имеют две обмотки. Одна из них постоянно подключена к сети и называется обмоткой возбуждения, на другую -- обмотку управления электрический сигнал подается лишь тогда, когда необходимо вызвать вращение вала. От напряжения управления зависят частота вращения и вращающий момент исполнительного двигателя, а следовательно, и развиваемая им механическая мощность.

Исполнительные двигатели постоянного тока по конструкции отличаются от двигателей постоянного тока общего назначения только тем, что имеют шихтованные (набранные из листов электротехнической стали) якорь, станину и полюсы, что необходимо для работы исполнительных двигателей в переходных режимах. Магнитная цепь исполнительных двигателей не насыщена, поэтому реакция якоря (см. § 26.2) практически не влияет на их рабочие характеристики.

В качестве исполнительных двигателей постоянного тока в настоящее время используют чаще всего двигатели с независимым возбуждением, реже -- двигатели с постоянными, магнитами. У двигателей с независимым возбуждением в качестве обмотки управления используют либо обмотку якоря -- двигатели с якорным управлением, либо обмотку полюсов -- двигатели с полюсным управлением.

У исполнительных двигателей с якорным управлением обмоткой возбуждения является обмотка полюсов, а обмоткой управления -- обмотка якоря (рис. 30.10, а). Обмотку возбуждения подключают к сети с постоянным напряжением на все время работы автоматического устройства. На обмотку управления подают сигнал (напряжение управления) лишь тогда, когда необходимо вызвать вращение якоря двигателя. От напряжения управления зависят вращающий момент и частота вращения двигателя. При изменении полярности напряжения управления меняется направление вращения якоря двигателя.

У исполнительных двигателей с полюсным управлением обмоткой управления является обмотка полюсов, а обмоткой возбуждения -- обмотка якоря (рис. 30.10, б). Якорь двигателя постоянно подключен к сети с напряжением . Для ограничения тока иногда последовательно с якорем включают добавочное (балластное) сопротивление . На обмотку полюсов напряжение управления , (сигнал) подают лишь тогда, когда необходимо вызвать вращение якоря.

Рис. 30.10. Схема включения исполнительных двигателей постоянного тока

Исполнительные двигатели постоянного тока обычной конструкции имеют существенный недостаток -- замедленность переходных процессов, т. е. отсутствие малоинерционности. Объясняется это в основном двумя причинами: наличием массивного якоря со стальным сердечником, обладающим значительным моментом инерции, и значительной индуктивностью обмотки якоря, уложенной в пазы сердечника якоря. Последняя причина способствует увеличению электромагнитной постоянной времени . Указанные недостатки отсутствуют в двигателях с гладким (полым) якорем (рис. 30.11). Станина 1 и полюсы 3 этого двигателя обычные. Возбуждение двигателя осуществляется либо с помощью обмотки возбуждения 2, либо постоянными магнитами.

Рис. 30.11. Малоинерционный исполнительный двигатель постоянного тока с полым якорем

Для уменьшения момента инерции якоря его обмотка отделена от массивного ферромагнитного сердечника, последний выполнен неподвижным (внутренний статор 5) и расположен на цилиндрическом выступе подшипникового щита 6.

Обмотка якоря в процессе изготовления укладывается на цилиндрический каркас, а затем заливается пластмассой. Готовый якорь 4 представляет собой полый стакан, состоящий из проводников обмотки, связанных воедино пластмассой. Концы секций обмотки, как и в обычном двигателе, соединяются с пластинами коллектора, который является частью дна полого стакана якоря 4. Вращающийся узел двигателя с гладким якорем состоит из вала, коллектора и обмотки якоря, залитой пластмассой.

Момент инерции полого якоря значительно меньше момента инерции обычного якоря, что обеспечивает хорошее быстродействие двигателя. Кроме того, индуктивность обмотки якоря снижается, что также способствует повышению быстродействия двигателя. К тому же снижение индуктивности обмотки улучшает коммутацию двигателя за счет уменьшения реактивной ЭДС (см § 27.4).

Недостаток рассмотренного малоинерционного двигателя с полым якорем -- наличие большого немагнитного промежутка между полюсами статора и неподвижным ферромагнитным сердечником -- внутренним статором. Этот промежуток складывается из двух воздушных зазоров и толщины стакана якоря (толщины слоя обмотки якоря). Наличие большого немагнитного промежутка на пути магнитного потока требует значительного увеличения МДС возбуждения, что приводит, во-первых, к увеличению габаритов двигателя из-за увеличения объема обмотки возбуждения, а во-вторых, к росту потерь на нагрев обмотки возбуждения. Однако КПД двигателя с полым якорем вследствие отсутствия потерь в стали сердечника якоря практически находится на том же уровне, что и в обычных двигателях, а в случае применения для возбуждения постоянных моментов значительно превосходит КПД последних.

Контрольные вопросы

1. Каково назначение компенсационной обмотки в ЭМУ?

2. Почему выходная характеристика тахогенератора криволинейна?

3. Будет ли работать БДПТ, если изменить полярность напряжения на его входе (см. рис. 30.6)?

4. Объясните принцип якорного и полюсного способов управления исполнительными двигателями?

5. Каковы достоинства и недостатки малоинерционного двигателя постоянного тока?

Размещено на Allbest.ru


Подобные документы

  • Назначение и принцип работы тахогенератора. Применение устройств, изготовленных по технологии LongLife. Тахогенераторы постоянного тока в схемах автоматики. Конструкция и принцип действия асинхронного тахогенератора. Амплитудная и фазовая погрешность.

    контрольная работа [592,9 K], добавлен 25.09.2011

  • Расчет машины постоянного тока. Размеры и конфигурация магнитной цепи двигателя. Тип и шаги обмотки якоря. Характеристика намагничивания машины, расчет магнитного потока. Размещение обмоток главных и добавочных полюсов. Тепловой и вентиляционный расчеты.

    курсовая работа [790,3 K], добавлен 11.02.2015

  • Рабочие характеристики электродвигателя. Расчет коллекторного двигателя постоянного тока малой мощности. Обмотка якоря, размеры зубцов, пазов и проводов. Магнитная система машины. Потери и коэффициент полезного действия. Индукция в станине, её значение.

    курсовая работа [597,6 K], добавлен 25.01.2013

  • Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

    реферат [3,6 M], добавлен 17.12.2009

  • Выбор главных размеров и расчет параметров якоря. Магнитная система машин постоянного тока. Определение размагничивающего действия поперечной реакции якоря. Расчет системы возбуждения и определение потерь мощности. Тепловой и вентиляционный расчет.

    курсовая работа [538,3 K], добавлен 30.04.2012

  • Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".

    методичка [658,2 K], добавлен 06.03.2015

  • Основные этапы проектирования электрического двигателя: расчет параметров якоря и магнитной системы машины постоянного тока, щеточно-коллекторного узла и обмотки добавочного полюса. Определение потери мощности, вентиляционных и тепловых характеристик.

    курсовая работа [411,3 K], добавлен 11.06.2011

  • Аналитический расчет коллекторного двигателя постоянного тока с возбуждением от феррит бариевых постоянных магнитов. Определение размеров двигателя. Подбор обмотки якоря. Расчет параметров коллекторов и щетки. Потери и коэффициент полезного действия.

    курсовая работа [241,5 K], добавлен 31.05.2010

  • Выбор рода тока и напряжения двигателя, его номинальной скорости и конструктивного исполнения. Расчёт мощности и выбор электродвигателя для длительного режима работы. Устройство и принцип действия двигателя постоянного тока. Выбор двигателя по мощности.

    курсовая работа [3,5 M], добавлен 01.03.2009

  • Особенности расчета двигателя постоянного тока с позиции объекта управления. Расчет тиристорного преобразователя, датчиков электропривода и датчика тока. Схема двигателя постоянного тока с независимым возбуждением. Моделирование внешнего контура.

    курсовая работа [1,2 M], добавлен 19.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.