Параллельная работа синхронных генераторов

Изучение процесса включения синхронных генераторов на параллельную работу. Характеристика принципа функционирования лампового синхроноскопа. Рассмотрение особенностей электромагнитного момента синхронного генератора. Расчет электромагнитного момента.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 15.02.2015
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Параллельная работа синхронных генераторов

1. Включение генераторов на параллельную работу

На электрических станциях обычно устанавливают несколько синхронных генераторов, включаемых параллельно для совместной работы (рис. 1). Наличие нескольких генераторов вместо одного суммарной мощности дает преимущества, объясняемые теми же соображениями, которые были изложены применительно к параллельной работе трансформаторов.

При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора в момент подключения его к сети должна быть равна и противоположна по фазе напряжению сети (), частота ЭДС генератора должна быть равна частоте переменного напряжения в сети ; порядок следования фаз на выводах генератора должен быть таким же, что и на зажимах сети.

Приведение генератора в состояние, удовлетворяющее всем указанным условиям, называют синхронизацией. Несоблюдение любого из условий синхронизации приводит к появлению в обмотке статора больших уравнительных токов, чрезмерное значение которых может явиться причиной аварии. синхроноскоп ламповый электромагнитный

Включить генератор в сеть с параллельно работающими генераторами можно или способом точной синхронизации, или способом самосинхронизации

Способ точной синхронизации. Сущность этого способа состоит в том, что, прежде чем включить генератор в сеть, его приводят в состояние, удовлетворяющее всем вышеперечисленным условиям. Момент соблюдения этих условий, т. е. момент синхронизации, определяют прибором, называемым синхроноскопом. По конструкции синхроноскопы разделяют на стрелочные и ламповые. Рассмотрим процесс синхронизации генераторов с применением лампового синхроноскопа, который состоит из трех ламп 1, 2, 3, расположенных в вершинах равностороннего треугольника.

При включении ламп по схеме «на погасание» (рис. 2, а) момент синхронизации соответствует одновременному погасанию всех ламп. Предположим, что звезда ЭДС генератора вращается с угловой частотой , превышающей угловую частоту

вращения звезды напряжений сети . В этом случае напряжение на лампах определяется геометрической суммой +;+;+ (рис. 2, б).

Рис. 1. Включение синхронных генераторов на параллельную работу: Г1 - Г4 - синхронные генераторы, ПД1 -ПД4 - приводные двигатели

В момент совпадения векторов звезды ЭДС с векторами звезды напряжений эта сумма достигает наибольшего значения, при этом лампы горят с наибольшим накалом (напряжение на лампах равно удвоенному напряжению сети). В последующие моменты времени звезда ЭДС обгоняет звезду напряжений, и напряжение на лампах уменьшается. В момент синхронизации векторы ЭДС и напряжений занимают положение, при котором , т.е. = 0, и все три лампы одновременно гаснут (рис. 2, в). При большой разности угловых частот и лампы вспыхивают часто. Изменяя частоту вращения первичного двигателя, добиваются равенства , о чем будет свидетельствовать погасание ламп на длительное время. В этот момент и следует замкнуть рубильник, после чего генератор окажется подключенным к сети.

Рис. 2. Ламповый синхроноскоп

Способ самосинхронизации. Ротор невозбужденного генератора приводят во вращение первичным двигателем до частоты вращения, отличающейся от синхронной не более чем на 2--5%, затем генератор подключают к сети. Для того чтобы избежать перенапряжений в обмотке ротора в момент подключения генератора к сети, ее замыкают на некоторое активное Сопротивление. Так как в момент подключения генератора к сети его ЭДС равна нулю (генератор не возбужден), то под действием напряжения сети в обмотке статора наблюдается резкий бросок тока, превышающий номинальное значение тока генератора. Вслед за включением обмотки статора в сеть подключают обмотку возбуждения к источнику постоянного тока и синхронный генератор под действием электромагнитного момента, действующего на его ротор, втягивается в синхронизм, т. е. частота вращения ротора становится синхронной. При этом ток статора быстро уменьшается.

При самосинхронизации в генераторе протекают сложные электромеханические переходные процессы, вызывающие значительные механические воздействия на обмотки, подшипники и муфту, соединяющую генератор с турбиной. Влияние этих воздействий на надежность генератора учитывается при проектировании синхронных генераторов. Способ самосинхронизации (грубой синхронизации) обычно применяют в генераторах при их частых включениях. Этот способ прост и легко автоматизируется.

2. Нагрузка генератора, включенного на параллельную работу

Обычно совместно на одну сеть работают несколько синхронных генераторов и мощность любого из них намного меньше суммарной мощности всех остальных генераторов. Будем считать, что синхронный генератор подключают на параллельную работу с другими генераторами, суммарная мощность которых настолько велика по сравнению с мощностью подключаемого генератора, что при любых изменениях параметров этого генератора напряжение сети и ее частота остаются неизменными.

Рис. 3. Векторные диаграммы синхронного генератора, включённого на параллельную работу в сеть большой мощности: а - при работе без нагрузки; б - при работе с нагрузкой

После подключения генератора в сеть при соблюдении всех условий синхронизации его ЭДС равна по значению и противоположна по фазе напряжению сети (рис. 3, а), поэтому ток в цепи генератора равен нулю, т. е. генератор работает без нагрузки. Механическая мощность приводного двигателя P1 в этом случае полностью затрачивается на покрытие потерь х. х.: .

Отсутствие тока в обмотке статора синхронного генератора 0) приводит к тому, что обмотка статора не создает вращающегося магнитного поля и в генераторе действует лишь магнитное поле возбуждения, вращающееся вместе с ротором с угловой частотой , но не создающее электромагнитного момента.

Рис. 3. К понятию об электромагнитном моменте синхронного генератора.

Если же увеличить вращающий момент приводного двигателя , то ротор машины, получив некоторое ускорение, сместится относительно своего первоначального положения на угол в направлении вращения. На такой же угол окажется сдвинутым вектор ЭДС генератора относительно своего положения, соответствующего режиму х. х. генератора (рис. 3, б). В результате в цепи статора появится результирующая ЭДС , которая создаст в цепи обмотки статора генератора ток I1. Если пренебречь активным сопротивлением обмотки статора и считать сопротивление этой обмотки чисто индуктивным, то ток , отстает по фазе от на угол 90° (рис. 3, б) и отстает по фазе от ЭДС на угол .

Ток I1 создает магнитное поле, вращающееся синхронно с ротором и создающее вместе с полем ротора результирующее магнитное поле синхронной машины. Ось этого результирующего поля d'--d' не совпадает с продольной осью полюсов ротора d - d: в синхронном генераторе ось полюсов ротора d - d опережает ось результирующего поля машины d'-d' на угол (рис. 4, а).

Известно, что разноименные магнитные полюсы взаимно притягиваются, поэтому между намагниченными полюсами ротора и неявно выраженными полюсами вращающегося поля статора возникают силы магнитного притяжения (рис. 4, б). Вектор это и силы на каждом полюсе ротора, направленный под углом к оси полюса, имеет две составляющие: - нормальная составляющая, направленная по оси полюсов, и -- тангенциальная составляющая, направленная перпендикулярно оси полюсов ротора. Совокупность тангенциальных составляющих F1 на всех полюсах ротора создает на роторе синхронного генератора электромагнитный момент, направленный встречно вращающемуся магнитному полю:

, (1)

где D2 -- диаметр ротора.

Из полученного выражения следует, что электромагнитный момент синхронной машины является синусоидальной функцией угла и может быть представлен выражением

, (2)

где Мmax -- максимальное значение электромагнитного момента, соответствующее значению угла = 90 эл. град.

Электромагнитный момент М, возникающий на роторе генератора направлен встречно вращающему моменту приводного двигателя , т. е. он является тормозящим моментом. На преодоление этого момента затрачивается часть мощности приводного двигателя, которая представляет собой электромагнитную мощность

, (3)

где -- угловая частота вращения ротора.

Таким образом, с появлением тока I1 в обмотке статора синхронного генератора, работающего параллельно с сетью, генератор получает электрическую нагрузку, а приводной двигатель (турбина, дизельный двигатель и т. п.) получает дополнительную механическую нагрузку. При этом механическая мощность приводного двигателя расходуется не только на покрытие потерь х. х. генератора , но и частично преобразуется в электромагнитную мощность генератора Рэм, т. е.

(4)

Следовательно, электромагнитная мощность синхронного ч тора представляет собой электрическую активную мощность, преобразованную из части механической мощности приводного двигателя:

Что же касается активной мощности на выходе синхронного генератора , отдаваемой генератором в сеть, т. е.

то она меньше электромагнитной мощности Рэм на значение, равное сумме электрических потерь в обмотке статора и добавочных потерь при нагрузке

. (5)

Следовательно, мощность на выходе синхронного генератора, (активная нагрузка) при его параллельной работе с сетью регулируется изменением вращающего момента приводного двигателя:

,

где -- угловая синхронная скорость вращения ротора синхронной машины, рад/с.

Если все слагаемые уравнения (4) разделить на угловую частоту , то получим уравнение моментов

. (6)

Из этого уравнения следует, что вращающий момент , развиваемый приводным двигателем на валу генератора, равен сумме противодействующих моментов: момента х. х. , обусловленного потерями х. х. и электромагнитного момента М, обусловленного нагрузкой генератора.

Момент х. х. для данного генератора постоянен (= соnst), поэтому нагрузка синхронного генератора возможна лишь за счет вращающего момента приводного двигателя, когда его значение превышает момент х. х., т. е. при .

3. Угловые характеристики синхронного генератора

Электромагнитная мощность неявнополюсного синхронного генератора при его параллельной работе с сетью

(7)

где - угол, на который продольная ось ротора смещена относительно продольной оси результирующего поля машины (рис. 4).

Электромагнитная мощность явнополюсного синхронного генератора

(8)

где и -- синхронные индуктивные сопротивления явнополюсной синхронной машины по продольно и поперечной осям соответственно, Ом.

Разделив выражения (7) и (8) на синхронную угловую скорость вращения , получим выражения электромагнитных моментов:

неявнополюсной синхронной машины

(9)

явнополюсной синхронной машины

(10)

где М -- электромагнитный момент, Нм.

Анализ выражения (10) показывает, что электромагнитный момент явнополюсной машины имеет две составляющие: одна из них представляет собой основную составляющую электромагнитного момента

. (11)

другая -- реактивную составляющую момента

. (12)

Основная составляющая электромагнитного момента явнополюсной синхронной машины зависит не только от напряжения сети (U1), но и от ЭДС , наведенной магнитным потоком вращающегося ротора в обмотке статора:

. (13)

Это свидетельствует о том, что основная составляющая электромагнитного момента зависит от магнитного потока ротора: ? . Отсюда следует, что в машине с невозбужденным ротором (= 0) основная составляющая момента = 0.

Реактивная составляющая электромагнитного момента не зависит от магнитного потока полюсов ротора. Для возникновения этой составляющей достаточно двух условий: во-первых, чтобы ротор машины имел явновыраженные полюсы () и, во-вторых, чтобы к обмотке статора было подведено напряжение сети ( ? ). Подробнее физическая сущность реактивного момента будет изложена в § 23.2.

При увеличении нагрузки синхронного генератора, т. е. с ростом тока I1 происходит увеличение угла , что ведет к изменению электромагнитной мощности генератора и его электромагнитного момента. Зависимости и , представленные графически, называются угловыми характеристиками синхронной машины.

Рассмотрим угловые характеристики электромагнитной мощности и электромагнитного момента явнополюсного синхронного генератора (рис. 5). Эти характеристики построены при условии постоянства напряжения сети () и магнитного потока возбуждения, т. е. = const. Из выражений (8) и (11) видим, что основная составляющая электромагнитного момента и соответствующая ей составляющая электромагнитной мощности изменяются пропорционально синусу угла (график 1), а реактивная составляющая момента (12) и соответствующая ей составляющая электромагнитной мощности изменяется пропорционально синусу угла 2 (график 2). Зависимость результирующего момента и электромагнитной мощности от угла определяется графиком 3, полученным сложением значений моментов и и соответствующих им мощностей по ординатам.

Рис. 5. Угловая характеристика синхронного генератора.

Максимальное значение электромагнитного момента соответствует критическому значению угла .

Как видно из результирующей угловой характеристики (график 3), при увеличении нагрузки синхронной машины до значений, соответствующих углу ?, синхронная машина работает устойчиво. Объясняется это тем, что при ? , рост нагрузки генератора (увеличение ) сопровождается увеличением электромагнитного момента. В этом случае любой установившейся нагрузке соответствует равенство вращающего момента первичного двигателя сумме противодействующих моментов, т. е. . В результате частота вращения ротора остается неизменной, равной синхронной частоте вращения.

При нагрузке, соответствующей углу >, электромагнитный момент Mя, уменьшается, что ведет к нарушению равенства вращающего и противодействующих моментов. При этом избыточная (неуравновешенная) часть вращающего момента первичного двигателя вызывает увеличение частоты вращения ротора, что ведет к нарушению условий синхронизации (машина выходит из синхронизма).

Электромагнитный момент, соответствующий критическому значению угла (), является максимальным Мmах.

Для явнополюсных синхронных машин = 60ч80 эл. град. Угол можно определить из формулы

(14)

(15)

У неявнополюсных синхронных машин = 0, а поэтому угловая характеристика представляет собой синусоиду и угол = 90°.

Отношение максимального электромагнитного момента Мmax к номинальному называется перегрузочной способностью синхронной машины или коэффициентом статической перегружаемости:

. (16)

Пренебрегая реактивной составляющей момента, можно записать

, (17)

т.е. чем меньше угол , соответствующий номинальной нагрузке синхронной машины, тем больше ее перегрузочная способность. Например, у турбогенератора = 25 ч 30°, что соответствует = 2,35ч2,0.

Трехфазный синхронный генератор с явно выраженными полюсами на роторе ( =10) включен на параллельную работу с сетью напряжением 6000 В частотой 50 Гц. Обмотка статора соединена звездой и содержит в каждой фазе = 310 последовательных витков, обмоточный коэффициент = 0,92, индуктивное сопротивление рассеяния обмотки = 10 Ом. Диаметр расточки D1 = 0,8 м, расчетная длина сердечника статора li = 0,28 м, воздушный зазор равномерный д = 2 мм, коэффициент полюсного перекрытия =0,7, коэффициент воздушного зазора kд = 1,3, коэффициент магнитного насыщения = 1,1. Магнитный поток ротора Ф = 0,058 Вб.

Требуется рассчитать значения электромагнитных моментов и построить графики , и М = f().

Решение. Полное индуктивное сопротивление реакции якоря по (20.19)

Ом

При = 0,7 и равномерном зазоре коэффициенты формы поля по (20.7) и (20.8):

= 0,958 и = 0,442.

Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]

Ом,

по поперечной оси [см. (20.25)]

Ом.

Синхронные индуктивные сопротивления по продольной и поперечной осям:

Ом,

Ом.

ЭДС обмотки статора в режиме х.х. по (13)

В.

Напряжение фазы обмотки статора

В.

Угловая частота вращения ротора

с-1.

Максимальное значение основной составляющей электромагнитного момента генератора (11)

Н•м

Максимальное значение реактивной составляющей электромагнитного момента (12)

Н·м

Результаты расчета моментов для ряда значений угла 0 приведены ниже:

,град

20

30

45

60

70

90

sin

0,342

0,500

0,707

0,866

0,940

1,0

, Нм

2036

2977

4209

5156

5596

5954

sin 2

0,643

0,866

1,0

0,866

0,643

0

Mp, Нм

1698

2287

2642

2287

1698

0

M,Нм

3734

5264

6851

7443

7294

5954

Угол , соответствующий максимальному моменту , по (14)

,

где;

0,48 = 61,3°.

Углу = 61,3° соответствуют моменты:

Н•м;

Н•м;

Н•м.

Графики моментов , и , построенные по результатам расчета, приведены на рис 6.

4. Колебания синхронных генераторов

Предположим, что синхронный генератор, подключенный на параллельную работу к сети, работает ненагруженным. Чтобы нагрузить генератор, увеличивают вращающий момент первичного двигателя до

значения , соответствующего повороту оси полюсов ротора на угол , и электромагнитному моменту (рис. 7, график 1). Однако под действием инерции вращающихся масс синхронной машины и приводного двигателя ротор повернется на угол >, при котором электромагнитный момент генератора достигает значения М'>M'1.

Рис. 6. угловые характеристики моментов

В результате нарушившегося равновесия моментов ротор начнет поворачиваться в направлении уменьшения угла , но силы инерции и в этом случае помешают ротору остановиться в положении, соответствующем углу , и переведут его в положение, соответствующее значению угла , при котором электромагнитный момент генератора окажется меньше вращающего момента . Поэтому ротор не остановится в положении , а будет поворачиваться в направлении увеличения угла .

Рис. 7. Колебания синхронной машины: 1- угловая характеристика; 2 - график затухающих колебаний ротор

Таким образом, ротор синхронного генератора будет совершать колебательные движения (качания) около среднего положения , (рис. 7, график 2), соответствующего равновесию вращающего и электромагнитного моментов. Если бы колебания ротора не сопровождались потерями энергии, то они продолжались бы неопределенно долго, т.е. были бы незатухающими. Однако в реальных условиях колебания ротора вызывают потери энергии, из которых наибольшее значение имеют магнитные потери, обусловленные возникновением вихревых токов в сердечнике ротора. Объясняется это тем, что при отсутствии колебаний частота вращения ротора постоянна и равна частоте вращения результирующего магнитного поля. Однако при возникновении колебаний ротора частота вращения последнего становится неравномерной, т. е. происходит его движение относительно магнитного поля статора, приведет к возникновению в сердечнике ротора вихревых токов. Взаимодействие этих токов с магнитным полем статора оказывает на ротор «успокаивающее» действие, уменьшающее его колебания. Следовательно, колебания ротора имеют затухающий характер, и поэтому спустя некоторое время ротор займет положение, соответствующее углу , при котором устанавливается равновесие моментов. Причинами, вызывающими колебания ротора, могут быть либо изменения вращающего момента первичного двигателя , либо изменения нагрузки генератора, т. е. электромагнитного момента М. Колебания ротора, вызванные указанными причинами, называют собственными.

Рис. 8. Успокоительная (демпферная обмотка)

Возможны также вынужденные колебания, вызванные неравномерным вращением ротора, например в генераторах с приводом от поршневых двигателей (дизели, газовые двигатели). Наиболее опасен случай совпадения частоты собственных колебаний с частотой вынужденных (резонанс колебаний). При этом колебания резко усиливаются, так что параллельная работа генераторов становится невозможной.

Потери энергии в металлических частях ротора оказывают тормозящее действие на подвижную часть машины и уменьшают ее колебания. Однако значительного уменьшения колебаний достигают применением в синхронной машине успокоительной (демпферной) обмотки. В явнополюсных машинах успокоительную обмотку выполняют в виде стержней, заложенных в пазы полюсных наконечников и соединенных на торцовых сторонах пластинами (рис. 8). В неявнополюсных машинах колебания устраняются лишь действием вихревых токов, наводимых в сердечнике ротора.

В заключение отметим, что изложенное здесь о колебаниях синхронных генераторов в равной мере относится и к синхронным двигателям.

5. Синхронизирующая способность синхронных машин

Из рассмотренного в предыдущих параграфах следует, что при параллельной работе нескольких синхронных генераторов и каждом из них возникает некоторая сила, удерживающая генератор в состоянии устойчивой работы, т. е. предотвращающая выход этого генератора из синхронизма.

Другими словами, синхронный генератор, включенный на параллельную работу, обладает синхронизирующей способностью. Физический смысл синхронизирующей способности синхронных генераторов состоит в следующем. В процессе работы синхронного генератора в нем действуют два вращающихся магнитных поля: поле статора и поле ротора. Оба поля вращаются синхронно и создают и машине результирующее вращающееся магнитное поле. Так как об мотки статоров всех генераторов, включенных на параллельную работу, электрически связаны между собой, то также «связанными» оказываются и результирующие магнитные поля всех генераторов, которые вращаются с синхронной частотой вращения n1.

Результирующее магнитное поле машины замыкается через сердечник ротора. Поэтому электрическая связь между обмотками статоров параллельно работающих машин в конечном итоге переходит в магнитную связь роторов этих машин, аналогичную эластичной механической связи, которая позволяет роторам смещаться относительно друг друга в пределах угла <.

Рис. 9. Синхронизирующая способность синхронной машины.

При этом роторы продолжают вращаться с синхронной частотой вращения. Лишь при смещении ротора какой-либо из параллельно работающих машин на угол , выходящий за указанные пределы, связь ротора этой машины с роторами других машин нарушается и машина выходит из синхронизма.

Для количественной оценки синхронизирующей способности синхронной машины вводят понятия удельной синхронизирующей мощности и удельного синхронизирующего момента . Удельная синхронизирующая мощность определяется отношением приращения мощности к соответствующему приращению угла (рис. 9):

(18)

Удельный синхронизирующий момент

(19)

Величины и тем больше, чем круче подъем угловой характеристики на участке, соответствующем изменению угла . В неустойчивой области угловой характеристики значения и отрицательны, поэтому устойчивая работа синхронной машины соответствует положительным значениям и .

При изменениях нагрузки нарушается равенство между мощностью приводного двигателя и мощностью генератора. Возникающий при этом небаланс мощностей представляет собой синхронизирующую мощность .

Синхронизирующей мощности соответствует синхронизирующий момент

(20)

Этот момент обусловлен разностью электромагнитного мокша генератора и вращающего момента приводного двигателя и оказывает на ротор генератора действие, предотвращающее выход машины из синхронизма.

Из графиков удельных синхронизирующих момента и мощности и мощности видно, что наибольшей синхронизирующей способностью синхронная машина обладает при . С ростом синхронизирующая способность машины снижается и при совершенно исчезает ( = 0; = 0). Синхронизирующей способностью обладают не только синхронные генераторы, но и синхронные двигатели.

6. U-образные характеристики синхронного генератора

Ранее мы рассматривали параллельную работу синхронного генератора при неизменном токе возбуждения. Что же произойдет в синхронном генераторе, если после подключения его к сети для параллельной работы изменить ток в его обмотке возбуждения, оставив неизменным вращающий момент приводного двигателя? Предположим, что генератор после подключения на сеть работает без нагрузки и его ЭДС уравновешивает напряжение сети . Е этом увеличить ток в обмотке возбуждения, т. е. перевозбудить машину, то ЭДС увеличится до значения и в цепи генератора появится избыточная ЭДС (рис. 10, а), вектор которой совпадает по направлению с вектором ЭДС . Ток , вызванный ЭДС , будет отставать от нее по фазе на 90° (поскольку ). По отношению к ЭДС этот ток также будет отстающим (индуктивным). С увеличением перевозбуждения значение реактивного (индуктивного) тока увеличится.

Если же после того, как генератор подключен к сети, уменьшить ток возбуждения, т. е. недовозбудить машину, то ЭДС уменьшится до значения и в цепи генератора опять будет действовать избыточная ЭДС . Теперь вектор этой ЭДС будет совпадать по направлению с вектором напряжения сети (рис. 10, б), и поэтому ток , вызванный этой ЭДС и отстающим от нее по фазе на 90°, будет опережающим (емкостным) по отношению к ЭДС генератора .

Показанное на векторных диаграммах можно объяснить следующим При перевозбуждении генератора увеличивается МДС возбуждения .

Рис. 10. Векторные диаграммы ЭДС синхронного генератора, включённого на параллельную работу.

Это сопровождается появлением в обмотке статора реактивного тока , которым по отношению к ЭДС является отстающим (индуктивным). Вы званная этим током продольно-размагничивающая реакция якоря компенсирует избыточную МДС возбуждения так, что ЭДС генератора остается неизменной. Такой же процесс происходит и при недовозбуждении генератора с той лишь разницей, что в обмотке появляется опережающий (емкостный) ток , а вызванная этим током продольно-намагничивающая реакция якоря компенсирует недостающую МДС возбуждения.

Рис. 11. U-образные характеристики синхронного генератора.

Следует иметь в виду, что ток , отстающий по фазе от ЭДС , по отношению к напряжению сети является опережающим током и, наоборот, ток , опережающий по фазе ЭДС , является отстающим по отношению к напряжению .

Если при всех изменениях тока возбуждения вращающий момент приводного двигателя остается неизменным, то также неизменной остается активная мощность генератора:

Из этого выражения следует, что при активная составляющая тока статора .

Таким образом, степень возбуждения синхронного генератора влияет только на реактивную составляющую тока статора. Что же касается активной составляющей тока , то она остается неизменной.

Зависимость тока статора от тока в обмотке возбуждения при неизменной активной нагрузке генератора выражается графически U-образной кривой. На рис. 11 представлены U-образные характеристики при = const, построенные для разных значений активной нагрузки: = 0; = 0,5 и =. U-образные характеристики синхронного генератора показывают, что любой нагрузке генератора соответствует такое значение тока возбуждения , при котором ток статора становится минимальным и равным только активной составляющей:. В этом случае генератор работает при коэффициенте мощности =1. Значения тока возбуждения, соответствующие =1 при различной нагрузке генератора, показаны на рис. 11 пунктирной кривой. Некоторое отклонение этой кривой вправо указывает на то, что при увеличении нагрузки ток возбуждения, соответствующий =1, несколько возрастает. Объясняется это тем, что при росте нагрузки необходимо некоторое увеличение тока возбуждения, компенсирующее активное падение напряжения.

Необходимо иметь в виду, что при постепенном уменьшении тока возбуждения наступает такое минимальное его значение, при котором магнитный поток обмотки возбуждения оказывается настолько ослабленным, что синхронный генератор выпадает из синхронизма -- нарушается магнитная связь между возбужденными полюсами ротора и вращающимся полем статора. Если соединить все точки минимально допустимых значений тока возбуждения на U-образных характеристиках (штриховая линия в левой части рис. 11), то получим линию предела устойчивости работы синхронного генератора при недовозбуждении.

С точки зрения уменьшения потерь генератора наиболее выгодным является возбуждение, соответствующее минимальному току статора, т. е. когда =1. Но в большинстве случаев нагрузка генератора имеет индуктивный характер и для компенсации индуктивных токов (отстающих по фазе от напряжения сети) приходится несколько перевозбуждать генератор, создавая условия, при которых ток статора , опережает по фазе напряжение сети . Следует отметить, что для сохранения , неизменным при изменениях активной нагрузки генератора требуется одновременное изменение тока возбуждения генератора.

7. Переходные процессы в синхронных генераторах

Рис. 12. картина магнитного поля при внезапном к. з.

Принципиальное отличие переходных процессов от рассмотренных ранее установившихся состоит в том, что при установившихся процессах работы синхронного генератора с симметричной нагрузкой в сердечнике и обмотках ротора не индуцируются никакие токи. В то же время при переходных процессах и несимметричных нагрузках между ротором и статором возникают трансформаторные связи.

Наибольший интерес представляет переходный процесс при внезапном трехфазном коротком замыкании синхронного генератора. Переходный процесс при резких изменениях нагрузки, следствием которого являются колебания синхронной машины, был рассмотрен в § 4.

При рассмотрении переходного процесса синхронного генератора пренебрегают активным сопротивлением его обмоток, т. е эти обмотки считают сверхпроводниками. Это допущение в значительной степени облегчает изучение процесса, не внося заметной погрешности, особенно для крупных машин, у которых активное сопротивление обмоток весьма мало. Таким образом, прежде чем перейти к рассмотрению внезапного к. з., введем понятие о сверхпроводящем контуре, для которого по второму закону Кирхгофа можно записать .

В любой момент времени полное потокосцепление сверхпроводящего контура

(21)

где и , -- потокосцепления, обусловленные внешней причиной и самоиндукцией соответственно.

Рассмотрим внезапное трехфазное к. з. синхронного генератора на его зажимах. Будем считать, что предварительно этот генератор работал в режиме х. х., т. е. в нем действовал единственный магнитный поток обмотки возбуждения, в которой проходил ток . При к. з. появляется вращающийся синхронно с ротором магнитный поток статора по продольной оси (обмотка статора представляет собой чисто индуктивную нагрузку) , направленный против потока (рис. 12, а). При этом в обмотке возбуждения и в успокоительной обмотке будут индуцироваться дополнительные токи и , которые в соответствии с правилом Ленца препятствуют изменению результирующего магнитного потока в машине. Эти токи создают собственные магнитные потоки и , которые противодействуют проникновению потока в сердечник ротора, т. е. будут вытеснять его в воздушный зазор межполосного пространства. В результате поток статора значительно уменьшится до значения . Соответственно уменьшится и индуктивное сопротивление обмотки статора по продольной оси, достигнув значения . Поэтому в начальный момент переходного процесса, называемого сверхпереходным, действующее значение тока внезапного к з. имеет наибольшую величину -- ударный ток короткого замыкания

, (22)

где -- сверхпереходное индуктивное сопротивление.

Обмотки возбуждения и успокоительная все же обладают некоторым активным сопротивлением, а поэтому индуцируемые в них дополнительные токи , и будут постепенно затухать. Однако этот процесс затухания протекает неодинаково, так как успокоительная обмотка и обмотка возбуждения имеют разные постоянные времени Т. Обмотка возбуждения, имея значительное число витков по сравнению с успокоительной обмоткой, обладает большей индуктивностью, а поэтому .

Поэтому к моменту времени, когда дополнительный ток в успокоительной обмотке уменьшится до нуля, дополнительный ток еще имеет некоторое значение. При этом магнитный поток реакции якоря частично будет проходить через ротор, отчего его значение несколько возрастает до значения . Соответственно возрастает индуктивное сопротивление статора по продольной оси, достигнув значения , называемого переходным индуктивным сопротивлением. При этом ток внезапного к. з. несколько уменьшится до значения

. (23)

Рис. 13. Осциллограммы токов при внезапном к. з.

Через некоторое время уменьшится до нуля и добавочный ток в обмотке возбуждения . При этом поток статора будет замыкаться полностью через ротор и его значение станет еще больше (). Соответственно возрастет и индуктивное сопротивление статора, достигнув значения , а ток к. з.

(24)

В результате в генераторе установится результирующий магнитный поток (рис. 12, б) .

С уменьшением магнитного потока, сцепленного с обмоткой статора, уменьшится ЭДС статора до значения , что приведет к уменьшению тока к. з. до установившегося значения

. (25)

Таким образом, при внезапном трехфазном к. з. происходит постепенное затухание тока к. з. Если, например, пик тока (ударный ток) при внезапном к. з. достигает 15-кратного значения, то установившийся ток к. з. достигает 1,5-кратного (для турбогенераторов) или 2,5-кратного (для гидрогенераторов) значения при токе возбуждения, соответствующем номинальной нагрузке. В некоторых случаях ток может оказаться даже меньше номинального. Причина столь малого тока при установившемся к. з. состоит в том, что генератор размагничивается полем реакции якоря.

На рис. 13 представлены осциллограммы токов синхронного генератора при внезапном к. з., где отмечены три характерных участка: -- сверхпереходный процесс; -- переходный процесс; III -- установившееся к. з.

Ударный ток к. з. создает значительные электромагнитные силы, действующие на обмотку статора. Особую опасность эти силы представляют для лобовых частей обмотки, что требует применения специальных мер по их укреплению, особенно в турбогенераторах, где лобовые части имеют значительный вылет.

При внезапном к. з. синхронного генератора возникают также значительные электромагнитные моменты, действующие на статор и ротор. В наиболее неблагоприятных условиях мгновенное значение такого момента достигает десятикратной величины по сравнению с номинальным моментом. Это необходимо учитывать при механических расчетах некоторых деталей машины и ее крепления к фундаменту. Режим короткого замыкания нежелателен еще и потому, что он нарушает параллельную работу синхронных генераторов.

С точки зрения уменьшения ударного тока к. з. полезным является увеличение магнитного потока рассеяния обмотки статора , так как это ведет к росту индуктивного сопротивления . Однако не следует забывать и о вредном действии магнитного потока рассеяния: уменьшении полезного магнитного потока и росте внутреннего падения напряжения (за счет увеличения индуктивного сопротивления обмотки).

Размещено на Allbest.ru


Подобные документы

  • Конструкция синхронного генератора и приводного двигателя. Приведение генератора в состояние синхронизации. Способ точной синхронизации. Процесс синхронизации генераторов с применением лампового синхроноскопа. Порядок следования фаз генератора.

    лабораторная работа [61,0 K], добавлен 23.04.2012

  • Системы возбуждения синхронных генераторов. Изменение величины выпрямленного напряжения. Системы автоматического регулирования возбуждения синхронных генераторов. Изменение тока возбуждения синхронного генератора. Активное сопротивление обмотки.

    контрольная работа [651,7 K], добавлен 19.08.2014

  • Параллельная работа синхронного генератора с сетью, регулирование его активной и реактивной мощности. Построение векторных диаграмм при различных режимах нагрузки. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа.

    контрольная работа [92,0 K], добавлен 07.06.2012

  • Проектирование синхронных генераторов Marathon Electric, состоящих из главного статора и ротора, статора и ротора возбудителя, вращающегося выпрямителя и регулятора напряжения. Характеристики и механический расчет синхронных двигателей серии Magnaplus.

    курсовая работа [2,0 M], добавлен 19.09.2012

  • Выбор синхронных генераторов, их технические параметры. Выбор двух структурных схем электрической станции, трансформаторов и автотрансформаторов связи. Технико-экономическое сравнение всех вариантов. Выбор и обоснование упрощенных схем всех напряжений.

    дипломная работа [3,8 M], добавлен 03.12.2008

  • Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

    учебное пособие [7,3 M], добавлен 23.12.2009

  • Принцип действия вертикального синхронного двигателя. Конструкция крестовин и вала. Расчет сердечника статора. Синтез и оптимизация электромагнитного ядра на персональном компьютере. Оценка резервов мощности серии вертикальных синхронных двигателей.

    курсовая работа [2,5 M], добавлен 11.10.2012

  • Создание генераторов с возбуждением от постоянных магнитов. Характерные особенности и принцип работы генератора Г. Уайльда. Сущность принципа самовозбуждения и появление динамомашины. Объединение принципа самовозбуждения с конструкцией кольцевого якоря.

    реферат [498,8 K], добавлен 21.10.2013

  • Защита от однофазных замыканий на землю в обмотке статора синхронных генераторов как одна из важнейших видов защиты. Принцип действия устройства РЗ, расчет его уставок. Особенности защиты. Сравнительный анализ отечественных и зарубежных образцов РЗ.

    курсовая работа [460,4 K], добавлен 21.08.2012

  • Общие понятия и определение электрических машин. Основные типы и классификация электрических машин. Общая характеристика синхронного электрического двигателя и его назначение. Особенности испытаний синхронных двигателей. Ремонт синхронных двигателей.

    дипломная работа [602,2 K], добавлен 03.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.