Магнитное поле машины постоянного тока

Картина магнитного поля четырехполюсной машины. Порядок расчета напряжений на участках магнитной цепи машины постоянного тока. График распределения индукции в воздушном зазоре. Действие реакции якоря при расчете числа витков полюсной катушки обмотки.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 15.02.2015
Размер файла 270,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Магнитное поле машины постоянного тока

1. Магнитная цепь машины постоянного тока

магнитный индукция напряжение ток

Магнитная система машины постоянного тока состоит из станины (ярма), сердечников главных полюсов с полюсными наконечниками, воздушного зазора и сердечника якоря.

На рис. 1 показана картина магнитного поля четырехполюсной машины. При этом имеется в виду машина, работающая в режиме х.х., когда МДС создается лишь обмоткой возбуждения, а в обмотке якоря и обмотке добавочных полюсов тока нет или он настолько мал, что его влиянием на картину магнитного поля можно пренебречь. В целях упрощения на рисунке не показаны добавочные полюсы, так как в режиме х.х. их влияние на картину магнитного поля машины незначительно. Как это следует из рис. 26.1, магнитный поток главных полюсов состоит из двух неравных частей: большая часть образует основной магнитный поток , а меньшая -- магнитный поток рассеяния полюсов . Поток рассеяния учитывается коэффициентом рассеяния .

Магнитодвижущая сила обмотки возбуждения на пару полюсов в режиме х.х. определяется суммой магнитных напряжений на участках магнитной цепи (рис. 2):

, (1)

где -- магнитные напряжения воздушного зазора, зубцового слоя якоря, главного полюса, спинки якоря, станины (ярма) соответственно.

Если машина имеет компенсационную обмотку, то в (1) следует ввести еще одно слагаемое , представляющее собой магнитное напряжение зубцового слоя главного полюса.

Порядок расчета магнитных напряжений на участках магнитной цепи машины постоянного тока в принципе такой же, что и в случае асинхронной машины. При этом расчет магнитных напряжений станины и сердечника главного полюса ведут по магнитному потоку главного полюса , который больше основного потока на значение потока рассеяния :

где -- коэффициент магнитного рассеяния.

Рис. 1. Магнитное поле машины постоянного тока в режиме х.х.

При заданном значении ЭДС машины определяют требуемое значение основного магнитного потока (Вб):

. (2)

Далее рассчитывают магнитную индукцию для каждого участка магнитной цепи:

, (3)

где -- магнитный поток на данном участке магнитной цепи. Вб;

-- площадь поперечного сечении этого участка, м2.

Рис. 2. Расчетный участок магнитной цепи четырехполюсной машины постоянного тока

По таблицам или кривым намагничивания для соответствующих ферромагнитных материалов находят напряженность магнитного поля на участках магнитной цепи , а затем определяют магнитное напряжение (А)

и МДС обмотки возбуждения на пару полюсов по (1).

Значения магнитных напряжений для различных участком магнитной цепи неодинаковы и зависят от магнитных сопротивлений этих участков. Наибольшим магнитным сопротивлением обладает воздушный зазор, поэтому магнитное напряжение намного больше любого из слагаемых выражения (1).

Другие участки магнитной цепи выполняют из ферромагнитных материалов. В машинах постоянного тока для изготовления различных элементов магнитной цепи применяют следующие материалы.

Сердечник якоря -- тонколистовые электротехнические стали марок 2013, 2312 и 2411 толщиной 0,5 мм.

Сердечник главного полюса -- листовая анизотропная (холоднокатаная) сталь марки 3411 толщиной 1 мм, пластины не изолируют.

Станина -- в машинах малой мощности станину изготовляют из стальных цельнотянутых труб, а для машин средней и большой мощности станины делают, сварными из листовой конструкционной стали марки СтЗ.

Магнитное напряжение воздушного зазора (А)

, (26.4)

где -- величина воздушного зазора, мм; -- коэффициент воздушного зазора, учитывающий увеличение магнитного сопротивления зазора из-за зубчатости якоря ( > 1).

Магнитная индукция в воздушном зазоре (Тл) пропорциональна основному магнитному потоку Ф. В машинах постоянного тока общего назначения Тл (большие значения соответствуют более крупным машинам).

Обычно расчет МДС ведут для ряда значений магнитного потока и , а затем строят магнитную характеристику машины , где -- относительное значение магнитного потока; -- относительное значение МДС обмотки возбуждения на пару полюсов в режиме х.х.; и -- номинальные значения магнитного потока и МДС в режиме х.х., соответствующие номинальному значению ЭДС . В начальной части магнитная характеристика прямолинейна (рис. 3). Объясняется это тем, что при небольших значениях магнитная цепь не насыщена и МДС возбуждения определяется, в основном, магнитным напряжением воздушного зазора .

Рис. 3. Магнитная характеристика

Затем с ростом наступает насыщение магнитной цепи и магнитная характеристика становится криволинейной. Коэффициент насыщения магнитной цепи машины

. (5)

Для машин постоянного тока .

2. Реакция якоря машины постоянного тока

При работе машины в режиме х.х. ток в обмотке якоря практически отсутствует, а поэтому в машине действует лишь МДС обмотки возбуждения . Магнитное поле машины в этом случае симметрично относительно оси полюсов (рис. 4, а). График распределения магнитной индукции в воздушном зазоре представляет собой кривую, близкую к трапеции.

Если же машину нагрузить, то в обмотке якоря появится ток, который создаст в магнитной системе машины МДС якоря . Допустим, что МДС возбуждения равна нулю и в машине действует лишь МДС якоря. Тогда магнитное поле, созданное этой МДС, будет иметь вид, представленный на рис. 4, б. Из этого рисунка видно, что МДС обмотки якоря направлена по линии щеток (в данном случае по геометрической нейтрали). Несмотря на то, что якорь вращается, пространственное положение МДС обмотки якоря остается неизменным, так как направление этой МДС определяется положением щеток.

Наибольшее значение МДС якоря -- на линии щеток (рис. 26.4, б, кривая 1), а по оси полюсов эта МДС равна нулю. Однако распределение магнитной индукции в зазоре от потока якоря совпадает с графиком МДС лишь в пределах полюсных наконечников. В межполюсном пространстве магнитная индукция резко ослабляется (рис. 4, б, кривая 2). Объясняется это увеличением магнитного сопротивления потоку якоря в межполюсном пространстве. МДС обмотки якоря на пару полюсов пропорциональна числу проводников в обмотке N и току якоря :

. (6)

Введем понятие линейной нагрузки (А/м), представляющей собой суммарный ток якоря, приходящийся на единицу длины его окружности по наружному диаметру якоря :

, (7)

где -- ток одного проводника обмотки, А.

Значение линейной нагрузки для машин постоянного тока общего назначения в зависимости от их мощности может быть (100ч500)·102 А/м. Воспользовавшись линейной нагрузкой, запишем выражение для МДС якоря: . Таким образом, в нагруженной машине постоянного тока действуют две МДС: возбуждения и якоря .

Влияние МДС обмотки якоря на магнитное поле машины называют реакцией якоря. Реакция якоря искажает магнитное поле машины, делает его несимметричным относительно оси полюсов.

На рис. 4, в показано распределение магнитных силовых линий результирующего поля машины, работающей в генераторном режиме при вращении якоря по часовой стрелке. Такое же распределение магнитных линий соответствует работе машины в режиме двигателя, но при вращении якоря против часовой стрелки. Если принять, что магнитная система машины не насыщена, то реакция якоря будет лишь искажать результирующий магнитный поток, не изменяя его значения: край полюса и находящийся под ним зубцовый слой якоря, где МДС якоря совпадает по направлению с МДС возбуждения, подмагничиваются; другой край полюса и зубцовый слой якоря, где МДС направлена против МДС возбуждения, размагничиваются. При этом результирующий магнитный поток как бы поворачивается относительно оси главных полюсов на некоторый угол, а физическая нейтраль (линия, проходящая через точки на якоре, в которых индукция равна нулю) смещается относительно геометрической нейтрали на угол . Чем больше нагрузка машины, тем сильнее искажение результирующего поля, а, следовательно, тем больше угол смещения физической нейтрали. При работе машины в режиме генератора физическая нейтраль смещается по направлению вращения якоря, а при работе двигателем -- против вращения якоря.

Рис. 4. Магнитное поле машины и распределение магнитной индукции в воздушном зазоре

Искажение результирующего поля машины неблагоприятно отражается на ее рабочих свойствах. Во-первых, сдвиг физической нейтрали относительно геометрической приводит к более тяжелым условиям работы щеточного контакта и может послужить причиной усиления искрения на коллекторе. Во-вторых, искажение результирующего поля машины влечет за собой перераспределение магнитной индукции в воздушном зазоре машины. На рис. 4, в показан график распределения результирующего поля в зазоре, полученный совмещением кривых, изображенных на рис. 4, а, б. Из этого графика следует, что магнитная индукция в зазоре машины распределяется несимметрично относительно оси полюсов, резко увеличиваясь под подмагниченными краями полюсов. Это приводит к тому, что мгновенные значения ЭДС секций обмотки якоря в моменты попадания их пазовых сторон в зоны максимальных значений магнитной индукции (под подмагниченные края полюсных наконечников) резко повышаются. В результате возрастает напряжение между смежными коллекторными пластинами . При значительных нагрузках машины напряжение можем превзойти допустимые пределы и миканитовая прокладка между смежными пластинами будет перекрыта электрической дугой. Имеющиеся на коллекторе частицы графита будут способствовать развитию электрической дуги, что приведет к возникновению мощной электрической дуги, перекрывающей весь коллектор или значительную его часть, -- явления чрезвычайно опасного.

Рис. 5. Разложение МДС обмотки якоря на продольную и поперечную составляющие

Таковы последствия влияния реакции якоря на машину с ненасыщенной магнитной системой. Если же магнитная система машины насыщена, что имеет место у большинства электрических машин, то подмагничивание одного края полюсного наконечника и находящегося под ним зубцового слоя якоря происходит в меньшей степени, чем размагничивание другого края и находящегося под ним зубцового слоя якоря. Это благоприятно сказывается на распределении магнитной индукции в зазоре, которое становится более равномерным, так как максимальное значение индукции под подмагничиваемым краем полюсного наконечника уменьшается на величину, определяемую высотой участка 1 на рис. 4, в. Однако результирующий магнитный поток машины при этом уменьшается. Таким образом, реакция якоря в машине с насыщенной магнитной системой размагничивает машину (так же как и у синхронной машины при активной нагрузке). В результате ухудшаются рабочие свойства машины: у генераторов снижается ЭДС, у двигателей уменьшается вращающий момент.

Влияние реакции якоря на работу машины усиливается при смещении щеток с геометрической нейтрали. Объясняется это тем, что вместе со щетками смещается и вектор МДС якоря (рис. 5, а). При этом МДС якоря помимо поперечной составляющей приобретает и продольную составляющую , направленную по оси полюсов. Если машина работает в генераторном режиме, то при смещении щеток в направлении вращения якоря продольная составляющая МДС якоря действует встречно МДС обмотки возбуждения , что ослабляет основной магнитный поток машины; при смещении щеток против вращения якоря продольная составляющая МДС якоря действует согласованно с МДС ,что вызывает некоторое подмагничивание машины и может явиться причиной искрения на коллекторе. Если машина работает в двигательном режиме, то при смещении щеток по направлению вращения якоря продольная составляющая МДС якоря подмагничивает машину, а при смещении щеток против вращения якоря продольная составляющая размагничивает машину. При дальнейшем рассмотрении вопросов, связанных с действием продольной составляющей МДС якоря, будем иметь в виду лишь ее размагничивающее действие, так как подмагничивающее действие в машинах постоянного тока общего назначения недопустимо из-за нарушения работы щеточного контакта.

Следует обратить внимание на то, что смещение щеток с геометрической нейтрали влияет и на поперечную составляющую МДС якоря -- величину, зависящую от угла , с ростом которого она уменьшается . Таким образом, в коллекторных машинах возможны два случая: 1) щетки установлены на геометрической нейтрали и реакция якоря является только поперечной; 2) щетки смещены с геометрической нейтрали и реакция якоря имеет две составляющие -- поперечную и продольную (размагничивающую). Принципиально также возможен случай, когда реакция якоря по поперечной оси отсутствует. Это имеет место, когда щетки расположены по оси, перпендикулярной геометрической нейтрали, т. е. когда = 900 (рис. 5, б). Однако такой случай не имеет практического применения, так как машина становится неработоспособной: в генераторном режиме ЭДС машины равна нулю, так как в параллельную ветвь обмотки входит равное число секций со встречным направлением ЭДС, а в двигательном режиме электромагнитные силы активных сторон обмотки якоря, действующие слева и справа от оси щеток, равны и противоположно направлены, а поэтому вращающего момента не создают.

3. Учет размагничивающего влияния реакции якоря

Размагничивающее влияние реакции якоря при нагрузке машины постоянного тока учитывают при расчете числа витков полюсных катушек возбуждения.

С этой целью при расчете числа витков такой катушки , используют значение МДС обмотки возбуждения , соответствующее номинальной нагрузке машины:

, (8)

где -- ток в обмотке возбуждения, А.

Значение МДС обмотки возбуждения на пару полюсов должно быть таким, чтобы ЭДС якоря при работе машины с номинальной нагрузкой была такой же, что и в режиме холостого хода, когда МДС возбуждения .

В современных машинах постоянного тока щетки устанавливают на геометрической нейтрали. В этом случае МДС обмотки возбуждения при нагрузке машины:

. (9)

Здесь представляет собой приращение МДС обмотки возбуждения, компенсирующее размагничивающее влияние реакции якоря по поперечной оси на пару полюсов (А).

Количественный учет размагничивающего действия реакции якоря усложнен тем, что МДС поперечной реакции якоря действует перпендикулярно оси главных полюсов и вызывает искажение магнитного потока обмотки возбуждения. Возникающее при этом размагничивание машины происходит из-за магнитного насыщения элементов магнитной цепи машины, в первую очередь зубцов сердечника якоря.

Рис. 6. График

Размагничивающее действие реакции якоря по поперечной оси учитывают введением коэффициента реакции якоря . Этот коэффициент получен в результате исследования большого количества некомпенсированных машин постоянного тока при различных значениях магнитной индукции в зубцах якоря .

Приращение МДС, компенсирующее реакцию якоря по поперечной оси (А),

, (10)

где -- МДС обмотки якоря на пару полюсов (6), А.

Для большинства машин постоянного тока магнитная индукция в зубцах якоря Тл. Приращение МДС определяют по графику (рис. 6), где нижняя граница графика соответствует = 1,7 Тл, а верхняя -- = 2,3 Тл.

Значение тока в обмотке возбуждения принимают в зависимости от вида возбуждения машины постоянного тока: при параллельном возбуждении при мощности машин от 10 до 1000 кВт ток принимают соответственно от 4,0 до 1,0% от номинального тока машины, а в машинах мощностью от 1 до 10 кВт - соответственно от 8,0 до 4,0%; в машинах последовательного возбуждения ток возбуждения принимают равным току якоря.

В машинах постоянного тока с компенсационной обмоткой , т. е. расчет числа витков полюсной катушки (8) ведут по величине .

Пример 1. Двигатель постоянного тока параллельного возбуждения мощностью кВт работает от сети напряжением = 220 В. КПД двигателя при номинальной нагрузке = 0,89. Двигатель четырехполюсный, обмотка якоря простая волновая (2= 2), число эффективных проводников в обмотке N = 164, ток возбуждения составляет 1,3% от номинального потребляемого двигателем тока. Определить число витков в полюсной катушке возбуждения , если все они соединены последовательно, воздушный зазор =2,0 мм, коэффициент воздушного зазора = 1,3, магнитная индукция в зазоре = 0,76 Тл, в зубцах якоря = 1,8 Тл, а коэффициент насыщения магнитной цепи машины =1,35.

Решение. Ток, потребляемый двигателем при номинальной нагрузке.

А.

Ток в обмотке возбуждения

А.

Ток в обмотке якоря

А.

Магнитное напряжение воздушного зазора по (4)

А.

МДС возбуждения в режиме холостого хода на пару полюсов

А.

МДС обмотки якоря на пару полюсов по (6)

А.

Коэффициент реакции якоря по рис. 6 при и Тл равен 0,19.

Приращение МДС, компенсирующее реакцию якоря по поперечной оси, по (10)

А.

МДС возбуждения при номинальной нагрузке двигателя по (9)

А.

Число витков в полюсной катушке возбуждения по (8)

4. Устранение вредного влияния реакции якоря

В связи с тем, что реакция якоря неблагоприятно влияет на рабочие свойства машины постоянного тока 1, при проектировании машины принимают меры к устранению реакции якоря или хотя бы к ослаблению ее влияния до допустимых пределов.

Компенсационная обмотка. Наиболее эффективным средством подавления влияния реакции якоря по поперечной оси является применение в машине компенсационной обмотки. Эту обмотку укладывают в пазы полюсных наконечников (рис. 7) и включают последовательно с обмоткой якоря таким образом, чтобы МДС компенсационной обмотки была противоположна по направлению МДС обмотки якоря . Компенсационную обмотку делают распределенной по поверхности полюсного наконечника всех главных полюсов машины. При этом линейную нагрузку для компенсационной обмотки принимают равной линейной нагрузке обмотки якоря.

Включение компенсационной обмотки последовательно в цепь якоря обеспечивает автоматичность компенсации МДС якоря при любой (в пределах номинальной) нагрузке машины. Таким образом, в машине постоянного тока с компенсационной обмоткой при переходе от холостого хода к режиму нагрузки закон распределения магнитной индукции в зазоре главных полюсов остается практически неизменным. Однако в межполюсном пространстве часть МДС якоря остается нескомпенсированной. Нежелательное влияние этой МДС на работу щеточного контакта устраняют применением в машине добавочных полюсов.

Компенсационные обмотки применяют лишь в машинах средней и большой мощности -- более 150--500 кВт при > 440 В, работающих с резкими колебаниями нагрузки, например в двигателях для прокатных станов. Объясняется это тем, что компенсационная обмотка удорожает и усложняет машину и ее применение в некоторых случаях экономически не оправдывается.

Исключение составляют машины постоянного тока, в которых поперечное поле' якоря используется полезно, например электромашинные усилители поперечного поля.

Рис. 7. Компенсационная обмотка

Увеличение воздушного зазора под главными полюсами. В машинах малой и средней мощности, не имеющих компенсационной обмотки, вредное влияние реакции якоря по поперечной оси ослабляют соответствующим выбором воздушного зазора под главными полюсами. При этом следует иметь в виду, что при достаточно малом воздушном зазоре и значительной линейной нагрузке реакция якоря по поперечной оси может не только ослабить магнитное поле под одной из частей главного полюса, но и перемагнитить его, т. е. изменить полярность -- «опрокинуть поле». Некоторое увеличение воздушного зазора под главными полюсами, особенно на их краях, значительно ослабляет действие реакции якоря. Однако не следует забывать, что увеличение воздушного зазора ведет к необходимости повышения МДС обмотки главных полюсов, а следовательно, и к увеличению размеров полюсных катушек, полюсов и габарита машины в целом.

На этом же принципе уменьшения МДС поперечной реакции якоря за счет повышенного магнитного сопротивления на пути ее действия основан и другой способ ослабления действия реакции коря. Этот способ состоит в том, что сердечники главных полюсов делают из листовой анизотропной (холоднокатаной) стали (обычно применяют сталь марки 3411). Эта сталь в направлении проката обладает повышенной магнитной проницаемостью, а «поперек проката» -- небольшой магнитной проницаемостью. Штамповать пластины полюсов из такой стали следует так, чтобы ось полюса совпадала с направлением проката листа стали.

5. Способы возбуждения машин постоянного тока

Для работы электрической машины необходимо наличие магнитного поля. В большинстве машин постоянного тока это поле создается обмоткой возбуждения, питаемой постоянным током. Свойства машин постоянного тока в значительной степени определяются способом включения обмотки возбуждения, т. е. способом возбуждения.

По способам возбуждения машины постоянного тока можно классифицировать следующим образом:

машины независимого возбуждения, в которых обмотка возбуждения (ОВ) питается постоянным током от источника, электрически не связанного с обмоткой якоря (рис. 8, а);

машины параллельного возбуждения, в которых обмотка возбуждения и обмотка якоря соединены параллельно (рис. 8, б);

машины последовательного возбуждения (обычно применяемые в качестве двигателей), в которых обмотка возбуждения и обмотка якоря соединены последовательно (рис. 8, в)

машины смешанного возбуждения, в которых имеются две обмотки возбуждения -- параллельная ОВ1 и последовательная ОВ2 (рис. 8, г);

Рис. 8. Способы возбуждения машин постоянного

машины с возбуждением постоянными магнитами (рис. 8, ).

Все указанные машины (кроме последних) относятся к машинам с электромагнитным возбуждением, так как магнитное поле в них создается электрическим током, проходящим в обмотке возбуждения.

Начала и концы машин постоянного тока согласно ГОСТу обозначаются: обмотка якоря -- Я1 и Я2, обмотка добавочных полюсов -- Д1 и Д2, компенсационная обмотка -- К1 и К2, обмотка возбуждения независимая -- М1 и М2, обмотка возбуждения параллельная (шунтовая) -- Ш1 и Ш2, обмотка возбуждения последовательная (сериесная) -- С1 и С2.

Контрольные вопросы

Какие участки содержит магнитная цепь машины постоянного тока?

В чем сущность явления реакции якоря машины постоянного тока?

Почему МДС якоря, действующая по поперечной оси, вызывает размагничивание машины по продольной оси?

Как учитывается размагничивающее действие реакции якоря при расчете числа витков полюсной катушки обмотки возбуждения?

С какой целью компенсационную обмотку включают последовательно с обмоткой якоря?

Почему с увеличением воздушного зазора ослабляется размагничивающее влияние реакции якоря?

Какие способы возбуждения применяют в машинах постоянного тока?

Размещено на Allbest.ru


Подобные документы

  • Методика и порядок расчета магнитной цепи машины по данным постоянного тока, чертеж эскиза. Определение Н.С. возбуждения при номинальном режиме с учетом генераторного режима работы. Чертеж развернутой схемы обмотки якоря при использовании петлевой.

    контрольная работа [66,2 K], добавлен 03.04.2009

  • Расчет машины постоянного тока. Размеры и конфигурация магнитной цепи двигателя. Тип и шаги обмотки якоря. Характеристика намагничивания машины, расчет магнитного потока. Размещение обмоток главных и добавочных полюсов. Тепловой и вентиляционный расчеты.

    курсовая работа [790,3 K], добавлен 11.02.2015

  • Расчеты главных размеров двигателя. Выбор и определение параметров обмотки якоря. Проверка магнитной цепи машины, также расчет параллельной обмотки возбуждения, щеточно-коллекторного узла и добавочных полюсов. Конструкция двигателя постоянного тока.

    курсовая работа [852,4 K], добавлен 30.03.2011

  • Размеры, конфигурация и материал магнитной цепи машины. Выбор размеров сердечников якоря, главных и добавочных полюсов. Определение необходимого количества витков обмотки якоря, коллекторных пластин и пазов с целью разработки двигателя постоянного тока.

    курсовая работа [242,8 K], добавлен 16.09.2014

  • Проектирование двигателя постоянного тока с мощностью 4,5 кВт, степенью защиты IP44. Выбор электромагнитных нагрузок. Расчет обмотки якоря, магнитной цепи, обмотки добавочных полюсов. Рабочие характеристики двигателя со стабилизирующей обмоткой и без нее.

    курсовая работа [1,5 M], добавлен 07.05.2014

  • Расчет двигателя постоянного тока: главные размеры машины; параметры обмотки якоря, коллектор и щеточный аппарат; геометрия зубцовой зоны. Магнитная система машины: расчет параллельной обмотки возбуждения; потери и коэффициент полезного действия.

    курсовая работа [2,7 M], добавлен 06.09.2012

  • Разработка конструкции двигателя постоянного тока. Число эффективных проводников в пазу. Плотность тока в обмотке якоря. Индукция в расчётных сечениях магнитной цепи. Магнитное напряжение воздушного зазора. Расчёт характеристики намагничивания машины.

    курсовая работа [333,5 K], добавлен 30.04.2009

  • Электромагнитная мощность генератора постоянного тока, выбор числа пар полюсов и коэффициента полюсной дуги. Расчет обмотки якоря и магнитной цепи, построение характеристики холостого хода. Определение магнитодвижущей силы возбуждения при нагрузке.

    курсовая работа [2,6 M], добавлен 27.10.2011

  • Содержание закона Ампера. Напряженность магнитного поля, её направление. Закон Био-Савара-Лапласа, сущность принципа суперпозиции. Циркуляция вектора магнитного напряжения. Закон полного тока (дифференциальная форма). Поток вектора магнитной индукции.

    лекция [489,1 K], добавлен 13.08.2013

  • Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

    презентация [4,1 M], добавлен 03.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.