Расчет толстостенных цилиндров

Особенности расчета равномерно распределенного по толщине стенки напряжения в тонкостенных цилиндрических резервуарах, подвергнутых внутреннему давлению. Геометрическая модель деформации элемента кольца. Напряжения в сферических толстостенных сосудах.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 22.10.2014
Размер файла 133,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Расчет толстостенных цилиндров

В тонкостенных цилиндрических резервуарах, подвергнутых внутреннему давлению, вполне возможно при вычислениях считать напряжения равномерно распределенными по толщине стенки. Это допущение мало отзывается на точности расчета.

В цилиндрах, у которых толщина стенок не мала по сравнению с радиусом, подобное предположение повело бы к большим погрешностям. Расчет таких цилиндров дан Ляме и Гадолиным в 1852 -- 1854 гг. Работы русского академика А. В. Гадолина в области расчета кривых стержней в применении к расчету прочности артиллерийских орудий создали ему мировую известность. Отечественные артиллерийские заводы (и многие зарубежные) до сих пор проектируют и изготовляют орудия, пользуясь исследованиями Гадолина.

На Рис.1 изображено поперечное сечение толстостенного цилиндра с наружным радиусом , внутренним ; цилиндр подвергнут наружному и внутреннему давлению .

Рис.1. Расчетная схема толстостенного цилиндра.

напряжение тонкостенный цилиндрический резервуар

Рассмотрим очень узкое кольцо материала радиусом внутри стенки цилиндра. Толщину кольца обозначим . Пусть АВ изображает небольшую часть этого кольца, соответствующую центральному углу .

Размер выделенного элемента, перпендикулярный к плоскости чертежа, возьмем равным единице. Пусть и будут напряжения, действующие по внутренней и наружной поверхностям элемента АВ, a -- напряжения по его боковым граням. По симметрии сечения цилиндра и действующей нагрузки элемент АВ перекашиваться не будет, и касательные напряжения по его граням будут отсутствовать. По граням элемента AB, совпадающим с плоскостью чертежа, будет действовать третье главное напряжение , вызванное давлением на днище цилиндра. Это напряжение можно считать постоянным по всем точкам поперечного сечения цилиндра.

На элемент AB действуют в плоскости чертежа две силы составляющие между собой угол , и радиальная сила, равная

Эта сила направлена в сторону наружной поверхности. Уравновешиваясь, эти три силы составляют замкнутый треугольник abc (Рис.2).

Рис.2. Условия равновесия элемента кольца

Из него следует, что радиальная сила, изображаемая отрезком ab, связана с силой (отрезок са) соотношением

;

пренебрегая малыми высшего порядка, получаем:

;

Отсюда

(1)

Условие равновесия дало только одно уравнение для нахождения двух неизвестных напряжений. Задача статически неопределима, и необходимо обратиться к рассмотрению деформаций. Деформация цилиндра будет заключаться в его удлинении и в радиальном, перемещении всех точек его поперечных сечений. Назовем радиальное перемещение точек внутренней поверхности рассматриваемого элемента через u (Рис.3). Точки наружной поверхности переместятся по радиусу на другую величину ; таким образом, толщина dr выделенного элемента увеличится на du, и относительное удлинение материала в радиальном направлении будет

Рис.3. Геометрическая модель деформации элемента кольца

В направлении напряжений относительное удлинение будет равно относительному удлинению дуги ab, занявшей положение cd; так как относительное удлинение дуги таково же, как относительное удлинение радиуса r, то . По закону Гука

(2)

Так как и определяются одной и той же функцией и то они связаны условием совместности. Дифференцируем по r:

(3)

Это и будет условие совместности деформаций; заменяя в нем значения и по (2), получим второе уравнение, связывающее и :

(4)

Подставляя в это уравнение значение разности из (32.1), находим:

(5)

Для совместного решения уравнений (1) и (5) продифференцируем первое по и подставим в него значение из второго; получим:

отсюда дифференциальное уравнение задачи:

(6)

Интеграл этого уравнения будет

(7)

что можно проверить подстановкой.

Постоянные А и В определятся из условий на внутренней и наружной поверхностях цилиндра:

(8)

Знак минус в правых частях этих формул поставлен потому, что положительными мы приняли растягивающие напряжения (Рис.1).

Из условий (8) получаем:

Пользуясь этими значениями и уравнением (7), получаем окончательные формулы для и :

(9)

Как видно из этих формул, сумма (не зависит от r, т. е. относительная деформация вдоль оси цилиндра во всех точках сечения одинакова (так как и одинаково), и сечение остается плоским

Представляет очень большой практический интерес случай когда имеет место только одно внутреннее давление ; тогда

(10)

График, изображающий распределение напряжений по толщине цилиндра в случае , дан на Рис.3. Так как по абсолютной величине продольное растягивающее напряжение обычно значительно меньше и то прочность цилиндра определяется этими последними. Применяя третью теорию прочности (наибольших касательных напряжений), получаем, что наибольшая разность главных напряжений, равная (для случая )

(11)

Рис.3. Распределение напряжений по толщине цилиндра при

будет иметь место в точках внутренней поверхности цилиндра и всегда будет по абсолютной величине значительно больше внутреннего давления.

Таким образом, остаточные деформации появятся прежде всего у внутренней поверхности цилиндра, когда будет равно пределу текучести материала; борьба с их появлением путем увеличения наружного радиуса практически безнадежна, -- с увеличением растут и числитель, и знаменатель формулы (11); поэтому разность главных напряжений хотя и убывает, но очень медленно. Однако момент появления пластических деформаций у внутренней поверхности цилиндра далеко не соответствует исчерпанию грузоподъемности конструкции; для правильной оценки прочности цилиндра необходимо перейти к расчету по допускаемым нагрузкам.

Рис.4. Динамика зоны текучести по толщине цилиндра

Полное исчерпание грузоподъемности произойдет тогда, когда кольцевая пластическая зона, распространяясь от внутренней поверхности цилиндра, дойдет до наружной; состояние разрушения наступит тогда, когда материал у наружной поверхности достигнет состояния, при котором произойдет разрыв. На фиг. 544 показано отношение внутреннего давления , при котором пластическая зона охватывает все сечение, к давлению, соответствующему началу пластических деформаций . Оказывается, что действительная грузоподъемность значительно выше получаемой при обычном методе расчета.

Упругая грузоподъемность толстостенных цилиндров может быть поднята путем создания начальных напряжений. Для этого необходимо изготовить цилиндр, составленный из двух цилиндров, вставленных один в другой; наружный диаметр внутреннего цилиндра делается несколько больше внутреннего диаметра наружного цилиндра; после одевания наружного цилиндра в нагретом состоянии на внутренний и его остывания по поверхности соприкасания возникнут реакция, сжимающие внутренний и растягивающие внешний цилиндры. Наличие этих начальных напряжений улучшает работу составного цилиндра при внутреннем давлении, как видно из приведенного ниже расчета.

На Рис.5 изображен составной цилиндр после остывания. Напряжения в тангенциальном направлении будут равны: для наружного цилиндра (растяжение)

для внутреннего цилиндра (сжатие)

Рис.5. модель составного цилиндра после остывания.

Установим, какую разницу в радиусах надо дать, чтобы осуществить желательное начальное усилие ; -- это начальный наружный радиус внутреннего цилиндра, а -- начальный внутренний радиус наружного цилиндра.

При остывании наружной трубы происходит выравнивание этих радиусов за счет уменьшения на , и увеличения на ; сумма абсолютных величин этих деформаций должна быть равна :

Относительное тангенциальное удлинение материала на внутренней поверхности наружного цилиндра равно

в эту формулу вместо подставлена величина общего для обоих цилиндров радиуса , так как -- малая величина и такая замена вводит очень небольшую погрешность. Относительное увеличение радиуса будет тоже ; поэтому

Относительное тангенциальное сжатие материала на наружной поверхности внутренней трубы равно:

укорочение радиуса будет равно:

Сумма абсолютных величин и равна по предыдущему

Таким образом, чтобы обеспечить наличие = принятого нами начального усилия необходимо дать разницу диаметров , равную

Минимальная температура , до которой надо нагреть наружный цилиндр при надевании его на внутренний, определяется уравнением

(при наших числовых данных : ).

Напряжения в сферических толстостенных сосудах

На фиг. 547 изображен элемент, вырезанный из толщи стенки толстостенного сферического сосуда; внутренний радиус этого элемента равен r, а наружный ; напряжения, действующие на этот элемент, изображены на чертеже.

Рис.6. фрагмент сферического толстостенного сосуда.

Составляя уравнения равновесия и совместности, получаем для и значения:

Постоянные А и В могут быть определены из условий на внутренней и внешней поверхностях сосуда при

и

соответственно, где и -- наружный и внутренний радиусы.

Так, при действии внешнего и внутреннего давлений А и В определяются из условий:

на внутренней поверхности,

на внешней поверхности

Отсюда

Тогда

Размещено на Allbest.ru


Подобные документы

  • Расчет выпрямителей с емкостной реакцией нагрузки. Методика расчета ключевых стабилизаторов напряжения. Программные средства моделирования схем источников вторичного электропитания. Алгоритмы счета и программная реализация стабилизаторов напряжения.

    дипломная работа [704,4 K], добавлен 24.02.2012

  • Расчет переходного процесса. Амплитудное значение напряжения в катушке. Значение источника напряжения в момент коммутации. Начальный закон изменения напряжения. Метод входного сопротивления. Схема электрической цепи для расчета переходного процесса.

    курсовая работа [555,6 K], добавлен 08.11.2015

  • Основные положения теории тонкостенных стержней. Касательные напряжения при изгибе системы с открытым профилем. Работа систем с открытыми и замкнутыми сечениями при наличии продольных поясов. Собственные колебания тонкостенной цилиндрической оболочки.

    курс лекций [10,9 M], добавлен 02.12.2013

  • Повышение устойчивости питающего напряжения посредством применения специальных стабилизаторов напряжения. Изучение принципа действия параметрических и компенсационных стабилизаторов постоянного напряжения, определение и расчет их основных параметров.

    лабораторная работа [1,8 M], добавлен 12.05.2016

  • Разложение периодической функции входного напряжения в ряд Фурье. Расчет гармонических составляющих токов при действии на входе цепи напряжения из 10 составляющих. Построение графика изменения входного напряжения и тока в течение одного периода в 1 ветви.

    курсовая работа [1,1 M], добавлен 10.04.2014

  • Расчет параметров схемы замещения. Расчет нагрузок на участках. Отклонение напряжения на источнике. Доза Фликера на кратковременном интервале. Определение коэффициента несинусоидальности напряжения, когда БК включена. Перегрузка токами высших гармоник.

    контрольная работа [284,5 K], добавлен 29.01.2011

  • Расчет тока в индуктивности и напряжения на конденсаторе до коммутации по схеме электрической цепи. Подсчет реактивного сопротивления индуктивности и емкости. Вычисление операторного напряжения на емкости с применением линейного преобразования Лапласа.

    контрольная работа [557,0 K], добавлен 03.12.2011

  • Пункт автоматического регулирования напряжения ПАРН типа ВДТ/VR-32, его назначение и область применения. Схема электроснабжения без использования и с использованием ПАРН. Расчет мощности в точке ответвления куста №1. Потери напряжения на участке лини.

    контрольная работа [3,4 M], добавлен 16.01.2015

  • Цель и задачи расчета прочности неукрепленного одиночного отверстия, расчетные зависимости при расчете прочности. Расчет толщины стенки цилиндрических барабанов, компенсирующей площади от укрепления накладкой, номинальной толщины стенки обечаек барабана.

    курсовая работа [2,3 M], добавлен 20.06.2010

  • Экспериментальное исследование распределения напряжения и тока вдоль однородной линии при различных режимах работы. Расчет зависимости действующих значений напряжения в линии от координаты для каждого режима. Графики расчетных функций напряжения.

    лабораторная работа [771,3 K], добавлен 19.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.