Совместные действия изгиба и кручения призматического стержня
Исследование вида деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения. Формирование результирующего изгибающего момента. Напряженное состояние вала, являющегося упрощенным плоским.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 22.10.2014 |
Размер файла | 72,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Лекция № 29. Совместные действия изгиба и кручения призматического стержня
Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).
Рис.1. Расчетная схема изогнутого и скрученного вала
Примем следующий порядок расчета.
1. Разлагаем все внешние силы на составляющие
P1x, P2x,..., Pnx и P1y, P2y,..., Pny.
2. Строим эпюры изгибающих моментов My и My. от этих групп сил.
У кругового и кольцевого поперечного сечений все центральные оси главные, поэтому косого изгиба у вала вообще не может быть, следовательно, нет смысла в каждом сечении иметь два изгибающих момента Mx, и My а целесообразно их заменить результирующим (суммарным) изгибающим моментом (рис. 2)
,
который вызывает прямой изгиб в плоскости его действия относительно нейтральной оси п--п, перпендикулярной вектору Мизг. Эпюра суммарного момента имеет пространственное очертание и поэтому неудобна для построения и анализа. Поскольку все направления у круга с точки зрения прочности равноценны, то обычно эпюру Мизг спрямляют, помещая все ординаты в одну (например, вертикальную) плоскость. Обратим внимание на то, что центральный участок этой эпюры является нелинейным.
Рис.2. Формирование результирующего изгибающего момента
3. Строится эпюра крутящего момента Мz.
Наибольшие напряжения изгиба возникают в точках k и k/, наиболее удаленных от нейтральной оси (рис. 3),
.
где Wизг -- момент сопротивления при изгибе.
В этих же точках имеют место и наибольшие касательные напряжения кручения
,
где Wр-- момент сопротивления при кручении.
а) эпюры напряжений б) распределение напряжений
Рис.3. Напряженное состояние вала
деформация изгиб кручение стержень
Как следует из рис. 3, напряженное состояние является упрощенным плоским (сочетание одноосного растяжения и чистого сдвига). Если вал выполнен из пластичного материала, оценка его прочности должна быть произведена по одному из критериев текучести. Например, по критерию Треска--Сен-Венана имеем
.
Учитывая, что Wр=2 Wизг, для эквивалентных напряжений получаем
,
где --эквивалентный момент, с введением которого задача расчета вала на совместное действие изгиба и кручения, сводится к расчету на эквивалентный изгиб.
Аналогично для Мэкв по.критерию Губера--Мизеса получаем
Тогда условие прочности для вала из пластичного материала будет иметь вид
.
Для стержня из хрупкого материала условие прочности следует записать в виде
,
где Мэкв должен быть записан применительно к одному из критериев хрупкого разрушения. Например, по критерию Мора
где .
Обратим внимание на особенности расчета при сочетании изгиба, растяжения и кручения стержня прямоугольного поперечного сечения (рис. 4.) Для выявления опасной точки здесь должны быть сравнены напряжения косого изгиба с растяжением в точке А, с эквивалентными напряжениями в точках В и С.
Рис.4. Модель расчета напряжений при сочетании кручения, растяжения и изгиба.
Полученные соотношения приобретают крайнюю необходимость и востребованность при выполнении Вами курсового проекта по основам конструирования при расчете на прочность и жесткость валов передач.
Размещено на Allbest.ru
Подобные документы
Совместные действия изгиба и кручения, расчет с применением гипотез прочности. Значение эквивалентного момента по заданным координатам. Реакция опор в вертикальной и горизонтальной плоскости. Эпюра крутящихся, изгибающихся и вращающихся моментов.
реферат [1,4 M], добавлен 16.05.2010Построение эпюры нормальных сил и напряжений. Методика расчета задач на прочность. Подбор поперечного сечения стержня. Определение напряжения в любой точке поперечного сечения при растяжении и сжатии. Определение удлинения стержня по формуле Гука.
методичка [173,8 K], добавлен 05.04.2010Анализ зависимости веса тела от ускорения опоры, на которой оно стоит, изменения взаимного положения частиц тела, связанного с их перемещением друг относительно друга. Исследование основных видов деформации: кручения, сдвига, изгиба, растяжения и сжатия.
презентация [2,9 M], добавлен 04.12.2011Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.
контрольная работа [782,4 K], добавлен 27.05.2013Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.
контрольная работа [646,4 K], добавлен 02.05.2015Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.
реферат [857,3 K], добавлен 23.06.2010Принцип действия и методика компьютерного расчета маломощного трансформатора для электропитания. Вычисление нагрузочной составляющей тока в первичных обмотках и диаметров проводов. Определение геометрических параметров кольцевого ферритового стержня.
лабораторная работа [469,8 K], добавлен 10.03.2015Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.
курсовая работа [264,9 K], добавлен 01.11.2013Определение равнодействующей плоской системы сил. Вычисление координат центра тяжести шасси блока. Расчёт на прочность элемента конструкции: построение эпюр продольных сил, прямоугольного и круглого поперечного сечения, абсолютного удлинения стержня.
курсовая работа [136,0 K], добавлен 05.11.2009Определение положения центра тяжести сечения, момента инерции, нормальных напряжений в поясах и обшивке при изгибе конструкции. Выведение закона изменения статического момента по контуру разомкнутого сечения. Расчет погонных касательных сил в сечении.
курсовая работа [776,9 K], добавлен 03.11.2014