Косой изгиб призматического стержня

Особенность дифференциального уравнения изгиба стержня. Важнейшая характеристика сложного вида деформации. Анализ геометрической суммы прогибов от прямых выпрямлений. Основной тип сечения при условиях прочности для балок из пластичного материала.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 22.10.2014
Размер файла 71,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Косой изгиб призматического стержня

Вид деформации является сложным, когда в поперечном сечении стержня возникают два и более силовых факторов. Сложный вид деформации можно рассматривать как сумму простых видов, изученных ранее (растяжение, изгиб, кручение), если применим принцип независимости действия сил (частный случай принципа суперпозиции или наложения, применяемый в механике деформируемого твердого тела).

Напомним формулировку принципа независимости действия сил: напряжение (деформация) от группы сил равно сумме напряжений (деформаций) от каждой силы в отдельности. Он справедлив, если функция и аргумент связаны линейной зависимостью. В задачах механики материалов и конструкций становится неприменимым, если:

· напряжения в какой-либо части конструкции от одной из сил или группы сил превышают предел пропорциональности ;

· деформации или перемещения становятся настолько большими, что нарушается линейная зависимость между ними и нагрузкой.

а) расчетная схема б) линейное и нелинейное сопротивления

Рис. 1 - Модели изгиба балки:

Например, дифференциальное уравнение изгиба стержня является нелинейным и вытекающая из него зависимость прогиба f от нагрузки Р для консольной балки, изображенной на рис. 1, а, также является нелинейной (рис. 1, б). Однако, если прогибы балки невелики (f<<l) настолько, что (dv/dz)2<<1 (так как dv/dz ~ f/l), то дифференциальное уравнение изгиба становится линейным (как видно из рис. 1, б, начальный участок зависимости Р от f, описываемый этим уравнением, также является линейным).

Известно, что косой изгиб имеет место, когда силы, его вызывающие, не лежат в одной из главных плоскостей инерции. Однако, если разложить внешние силы по главным осям инерции Ох и Оу, то получим две системы сил P1x, P2x, …, Pnx и P1y, P2y,..., Pny, каждая из.которых вызывает прямой изгиб с изгибающими моментами соответственно My и Мx (рис. 2). Применяя принцип независимости действия сил, нормальные напряжения (рис. 3) определим как алгебраическую сумму напряжений от Mx и Мy:

Чтобы не связывать себя формальными правилами знаков, слагаемые будем определять по модулю, а знаки ставить по смыслу. Прогибы балки определим как геометрическую сумму прогибов от прямых изгибов (рис. 2)

.

Таким образом, расчет на косой изгиб с применением принципа независимости действия сил сводится к расчету на два прямых изгиба с последующим алгебраическим суммированием напряжений и геометрическим суммированием прогибов.

Рис. 2 - Расчетная модель косого изгиба бруса

Рис. 3 - Связь нормального напряжения с внутренними изгибающими моментами

В случае поперечных сечений, имеющих две оси симметрии и выступающие угловые точки (рис. 4) с равными по модулю и максимальными одноименными координатами и напряжения в этих точках будут равны

Слагаемые в этом выражении рекомендуется определять по модулю, а знаки ставить по смыслу. Например, на рис. 5 верхний ряд знаков «+» и «--» соответствует напряжениям от Мx, а нижний ряд -- от My, и напряжения в этих точках будут равны. изгиб стержень сечение балка

Рис. 4 - Симметричные варианты сечений

Рис. 5 - Расстановка знаков от действия моментов

Условие прочности для балок из пластичного материала с указанным типом сечений запишется в виде

В остальных случаях для определения max а (или max dp и max для хрупкого материала) необходимо по общей формуле проверить напряжения во всех подозрительных точках.

Есть и другой путь: положив , получим уравнение нейтральной линии. Так как напряжения в точках поперечного сечения будут пропорциональными расстояниям от нейтральной линии, то max будут возникать в наиболее удаленных от нее точках.

Размещено на Allbest.ru


Подобные документы

  • Определение нормальных напряжений в произвольной точке поперечного сечения балки при косом и пространственном изгибе. Деформация внецентренного сжатия и растяжения. Расчет массивных стержней, для которых можно не учитывать искривление оси стержня.

    презентация [156,2 K], добавлен 13.11.2013

  • Методические указания и задания по дисциплине "Сопротивление материалов" для студентов-заочников по темам: растяжение и сжатие стержня, сдвиг, кручение, теория напряженного состояния и теория прочности, изгиб прямых стержней, сложное сопротивление.

    методичка [1,4 M], добавлен 22.01.2012

  • Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.

    курсовая работа [1,2 M], добавлен 25.05.2015

  • Построение эпюры нормальных сил и напряжений. Методика расчета задач на прочность. Подбор поперечного сечения стержня. Определение напряжения в любой точке поперечного сечения при растяжении и сжатии. Определение удлинения стержня по формуле Гука.

    методичка [173,8 K], добавлен 05.04.2010

  • Решение задачи на построение эпюр продольных сил и нормальных напряжений ступенчатого стержня. Проектирование нового стержня, отвечающего условию прочности. Определение перемещения сечений относительно неподвижной заделки и построение эпюры перемещений.

    задача [44,4 K], добавлен 10.12.2011

  • Совместные действия изгиба и кручения, расчет с применением гипотез прочности. Значение эквивалентного момента по заданным координатам. Реакция опор в вертикальной и горизонтальной плоскости. Эпюра крутящихся, изгибающихся и вращающихся моментов.

    реферат [1,4 M], добавлен 16.05.2010

  • Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.

    реферат [857,3 K], добавлен 23.06.2010

  • Внецентренное растяжение (сжатие). Ядро сечения при сжатии. Определение наибольшего растягивающего и сжимающего напряжения в поперечном сечении короткого стержня, главные моменты инерции. Эюры изгибающих моментов и поперечных сил консольной балки.

    курсовая работа [2,1 M], добавлен 13.05.2013

  • Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.

    контрольная работа [646,4 K], добавлен 02.05.2015

  • Уравнения гиперболического типа с частными производными 2-го порядка, решение равенства свободных колебаний струны методом разделения переменных. Описание дифференциальных уравнений теплопроводности для полубесконечного стержня в виде интеграла Пуассона.

    курсовая работа [480,7 K], добавлен 05.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.