Поток вектора напряженности
Понятие потока вектора однородного и неоднородного полей. Электростатическое поле, создаваемое единичным положительным зарядом, теорема Гаусса и ее применение к расчету напряженности электростатического поля. Определение поверхностной плотности заряда.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 19.10.2014 |
Размер файла | 308,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Поток вектора напряженности
Определим поток вектора через произвольную поверхность dS. - нормаль к поверхности.б - угол мєжду нормалью и силовой линией вектора . Можно ввести вектор площади . ПОТОКОМ ВЕКТОРА называется скалярная величина ФЕ равная скалярному произведению вектора напряженности на вектор площади
Для однородного поля
Для неоднородного поля
где - проекция на , - проекция на .
В случае криволинейной поверхности S ее нужно разбить на элементарные поверхности dS, рассчитать поток через элементарную поверхность, а общий поток будет равен сумме или в пределе интегралу от элементарных потоков
где - интеграл по замкнутой поверхности S (например, по сфере, цилиндру, кубу и т.д.)
Поток вектора является алгебраической величиной: зависит не только от конфигурации поля , но и от выбора направления . Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью.
Для однородного поля поток через замкнутую поверхность равен нуля. В случае неоднородного поля
.
Теорема Гаусса и ее применение к расчету напряженности электростатического поля
I. Рассмотрим электростатическое поле, создаваемое единичным положительным зарядом. Заключим его в сферу радиуса R. Определим поток напряженности через сферическую поверхность радиуса R.
Разобъем поверхность S сферы на элементарные площадки dS. Нормаль к площадке dS направлена по линии радиуса сфера и совпадает с направлением вектора : параллельна поэтому
Тогда поток вектора через поверхность S будет равен сумме потоков через элементарные площадки dS и устремляя dS к 0 можно записать, что
Учитывая, что напряженность поля точечного заряда равна
Этот результат можно обобщить на случай любой поверхности.
Учитывая принцип суперпозиции можно полученный результат применить к любому количеству зарядов, находящихся внутри поверхности.
Теорема Гаусса
Поток вектора напряженности через произвольную замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, деленной на е0 (е0 - электрическая постоянная)
вектор электростатический поле гаусс
II. Применение теоремы Гаусса.
1. Напряженность поля, создаваемая бесконечно протяженной однородно заряженной плоскоти с поверхностной плотностью заряда у.
2. ПОВЕРХНОСТНАЯ ПЛОТНОСТЬ ЗАРЯДА показывает, какой заряд приходится на единицу площади
Пинии напряженности перпендикулярны рассматриваемой поверхности и направлены от нее в обе стороны. Построим цилиндр с основанием S, образующая которого параллельна линиям напряженности .
Размещено на http://www.allbest.ru/
Так как образующая цилиндра параллельна , то поток через основание S равен
Поток через боковую поверхность цилиндра равен нулю, т.к. перпендикулярна S cosб= cos90° = 0, следовательно,
3. Напряженность поля, создаваемая двумя параллельными бесконечно протяженными пластинами с поверхностной плотностью зарядов +у и -у. Найден поле Е, используя принцип
суперпозиции полей. В области между плоскостями
Слева и справа от плоскостей поля вычитаются, т.к. линии напряженности направлены навстречу друг другу .
4. Напряженность ноля, создаваемая бесконечно протяжённой нитью с линейной плотностью заряда ф.
Линейная плотность заряда показывает, какой заряд приходится на единицу длина проводника.
Требуется определить напряженность ноля на некотором расстоянии r от нити. Для этого построим цилиндр радиуса r и высотой h, по оси которого проходит нить.
Поток через основания рассматриваемого цилиндра равен нулю, т.к. перпендикулярна вектору , следовательно, поток будет определяться только потоком через боковую поверхность цилиндра
5. Напряженность поля, создаваемого сферической поверхностью с поверхностной плотностью заряда у.
На сфере радиуса R распределен заряд q. Поверхностная плотность заряда
Линии напряженности направлены радиально, отходя от поверхности сфера под прямым углом. Окружаем данную сферу сферой радиуса r и определяем поток напряженности через cферическую поверхность радиуса r.
При r > R весь заряд q попадает внутрь сфера r. Тогда по теореме Гаусса
, т.к. Еn = E.
При r < R внутри поверхности радиуса r зарядов нет и поэтому Е=0. На этом основано экранирование - защита от внешних электрических полей.
6. Напряженность поля объемно заряженного шара с объемной плотностью заряда с.
Объемная плотность заряда показывает, какой заряд приходится на единицу объема
а) При r > R по пункту 4 находим
б) При r < R
Размещено на Allbest.ru
Подобные документы
Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.
реферат [61,6 K], добавлен 08.04.2011Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.
презентация [342,6 K], добавлен 19.03.2013Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.
курсовая работа [99,5 K], добавлен 25.04.2010Силовые линии электростатического поля. Поток вектора напряженности. Дифференциальная форма теоремы Остроградского-Гаусса. Вычисление электростатических полей с помощью теоремы Остроградского-Гаусса. Поле бесконечной равномерно заряженной плоскости.
презентация [2,3 M], добавлен 13.02.2016Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.
шпаргалка [619,6 K], добавлен 04.05.2015Теорема о циркуляции вектора. Работа сил электростатического поля. Потенциальная энергия. Разность потенциалов, связь между ними и напряженностью. Силовые линии и эквипотенциальные поверхности. Расчет потенциалов простейших электростатических полей.
презентация [2,4 M], добавлен 13.02.2016Сущность электростатического поля, определение его напряженности и графическое представление. Расчет объемной и линейной плотности электрического заряда. Формулировка теоремы Гаусса. Особенности поляризации диэлектриков. Уравнения Пуассона и Лапласа.
презентация [890,4 K], добавлен 13.08.2013Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.
презентация [522,0 K], добавлен 24.09.2013Понятие и предмет электростатики. Изучение свойств электрического заряда, закона сохранения заряда, закона Кулона. Особенности направления вектора напряженности. Принцип суперпозиции полей. Потенциал результирующего поля, расчет по методу суперпозиции.
презентация [773,6 K], добавлен 26.06.2015Расчет напряженности и потенциала электрического поля, создаваемого заряженным телом. Распределение линий напряженности и эквипотенциальных линий вокруг тела. Электрическое поле, принцип суперпозиции. Связь между потенциалом и напряженностью поля.
курсовая работа [1,5 M], добавлен 26.12.2011