Второй закон термодинамики
Характеристика сути термодинамики. История её развития, значение для науки и техники. Параметры состояния (объём, давление, температура, количество вещества, концентрация). Понятие внутренней энергии системы. Обратимые и необратимые процессы, энтропия.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 02.10.2014 |
Размер файла | 345,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНОБРНАУКИ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
ПЕНЗЕНСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ
Кафедра биотехнологии и техносферной безопасности
Дисциплина "Основы термодинамики и теплотехники"
КУРСОВАЯ РАБОТА
Второй закон термодинамики
Выполнил:
студент группы 10БТ
Выпирайло Д.А.
Руководитель: к. б. н.,
доцент Кузьмин А.А.
Пенза, 2012
Содержание
Введение
1. Параметры состояния
2. Внутренняя энергия
3. Второй закон термодинамики
3.1 Обратимые и необратимые процессы
3.2 Формулировка второго закона термодинамики
3.3 Энтропия
3.4 Объединённое уравнение первого и второго законов термодинамики
4. Абсолютная энтропия
Заключение
Список литературы
Введение
Определение понятия «термодинамика». В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.
Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.
Термодинамика - это раздел физики, изучающий соотношения и превращения теплоты и других форм энергии.
В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.
В отдельные дисциплины выделились химическая термодинамика, изучающая физико-химические превращения, связанные с выделением и поглощением тепла, а также теплотехника.
В термодинамике имеют дело не с отдельными молекулами, а с макроскопическими телами, состоящими из огромного числа частиц. Эти тела называются термодинамическими системами. В термодинамике тепловые явления описываются макроскопическими параметрами-давление, температура, объём, которые не применимы к отдельным молекулам или атомам.
Значение термодинамики для науки и техники. Термодинамика может быть применена в широком круге вопросов в области науки и техники, таких, как двигатели, фазовые переходы, химические реакции, явления переноса, и даже чёрные дыры. Термодинамика имеет важное значение для других областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения, и полезно в таких других областях, как
История развития термодинамики. Термодинамика как наука возникла в середине XIX в. когда в связи с широким развитием и использованием тепловых машин появилась острая необходимость в изучении закономерностей превращения теплоты в работу и создании теории тепловых машин, используемой для проектирования двигателей внутреннего сгорания, паровых турбин, холодильных установок. Поэтому основным содержанием термодинамики прошлого столетия было изучение свойств газов и паров, исследование циклов тепловых машин с точки зрения повышения их КПД.
В XX в. наиболее актуальной задачей становиться разработка теории течения и истечения паров и газов в связи с широким развитием паровых турбин. Характерным предметом исследования становятся термодинамические свойства паров, жидкостей, твердых тел.
1. Параметры состояния
Состояние системы характеризуют параметрами состояния: объемом, давлением, температурой, количеством вещества, концентрацией, энергией и т.д. Термодинамическим параметром может быть любое свойство системы, если оно рассматривается как одна из независимых переменных, определяющих состояние системы.
Если все параметры состояния не изменяются во времени, то система, говорят, находится в равновесном состоянии, или просто - в равновесии.
В химической термодинамике свойства системы рассматриваются в ее равновесных состояниях: начальном (исходном) и конечном.
Предположим, например, что некая система из равновесного состояния «1» с параметрами Ti, Pi, Vi переходит в новое (конечное) состояние «2», характеризующееся параметрами T2, P2, V2. Естественно, что в процессе перехода параметры состояния системы непрерывно изменяются, но химическая термодинамика изучает не промежуточные их значения, а параметры состояния системы лишь в начальном и конечном равновесных состояниях и на основании этого делает выводы о возможности процессов в указанном направлении, энергетических изменениях. Применительно к рассматриваемой нами системе, о ее свойствах приходится судить по изменению параметров:
АT= T2-Ti AP = P2 - Pi и АV = V2 - Vi
Кстати, заметим, что в термодинамике принято из параметров конечного состояния вычитать параметры начального состояния. Термодинамические параметры состояния системы характеризуют лишь данное состояние, никак не свидетельствуя о предшествующих или промежуточных состояниях системы.
Другими словами, - при переходе системы из одного состояния в другое изменение ее свойств не зависит от пути перехода (процесса), а определяется лишь начальным и конечным состоянием системы (можно сказать: система не «помнит» своей истории).
2. Внутренняя энергия
Поскольку химические превращения сопровождаются выделением (поглощением) энергии, спрашивается, откуда же она берется (или куда девается)? По-видимому, взаимодействующие вещества и каждое вещество в отдельности содержат и содержали определенный запас энергии, но только в скрытой форме. А проявляется она при их взаимодействии. Этот запас энергии тела или системы тел называется внутренней энергией, которую обычно обозначают латинской буквой U.
Она включает в себя кинетическую и потенциальную энергию частиц, составляющих данные вещества системы. Внутренняя кинетическая энергия обусловлена тепловым хаотическим движением частиц и непосредственно связана с температурой. Внутренняя потенциальная энергия - это энергия взаимодействия ядер с ядрами, электронов с ядрами, электронов с электронами и т.п. В понятие внутренней энергии входит и ядерная энергия и много других составляющих, которые далеко не все нам известны в настоящее время, а поэтому абсолютное значение ее экспериментально определить или рассчитать не представляется возможным. Но важно другое, что каждое тело, вещество, система имеет определенное значение этого запаса внутренней энергии U.
Заметим, в понятие внутренней энергии системы не входит потенциальная энергия положения системы в пространстве и кинетическая энергия движения всей этой системы как целого. То есть внутренняя энергия какой-либо системы, (например, колбы с реагирующими веществами) и на поверхности Земли и в лаборатории на восьмом этаже, а так же в летящем самолете, одна и та же.
Внутренняя энергия системы является ее свойством и зависит только от ее сиюминутного состояния и не зависит от предыстории системы в том смысле, что, говоря о ее значении в данном состоянии, мы не можем, например, обнаружить, за счет чего система изменила свою энергию: или за счет тепла, или за счет работы. Внутренняя энергия, говорят, является функцией состояния.
Функция состояния обладает двумя особенностями:
- при переходе системы из одного состояния в другое изменение параметра не зависит от пути перехода;
- если система совершает круговой процесс, возвращаясь в исходное состояние, то изменение параметра системы равно нулю.
На рисунке (рис-1) схематично представлено изменение внутренней энергии системы в процессе перехода ее из состояния «1» в состояние «2» по пути а и б. Независимо от пути перехода изменение внутренней энергии
AU = U2 - U1
оказывается одним и тем же, поскольку оно определяется лишь начальным и конечным состоянием системы.
В случае же совершения какого-то процесса и возвращения системы в исходное состояние изменение внутренней энергии оказывается равным нулю AU = 0 . В этом случае мы даже не можем сказать, а был ли процесс, если будем судить только по начальным и конечным параметрам состояния.
Внутренняя энергия U определяется параметрами состояния системы: температурой T, давлением P, объемом V:
U = f (P, T, V),
которые в свою очередь характеризуют кинетическую и потенциальную энергию частиц системы.
Энергия системы складывается из энергии ее составных частей, т.е. она обладает свойством аддитивности.
Так как запас внутренней энергии U зависит и от количества вещества, то для определенности и простоты при расчетах в химической термодинамике условились относить его к 1 молю вещества.
Единицей измерения внутренней энергии служит Джоуль (Дж) или в старых литературных изданиях - калория (кал), которые связаны между собой простым соотношением: 1 кал = 4.184 Дж.
Рис-1
3. Второй закон термодинамики
3.1 Обратимые и необратимые процессы
Одним из важнейших понятий термодинамики является понятие об обратимых и необратимых процессах.
Термодинамический процесс представляет собой совокупность непрерывно изменяющихся состояний термодинамической системы.
Между двумя состояниями 1 и 2 системы можно представить себе два процесса, происходящих по одному и тому же пути: от состояния 1 состоянию 2 и наоборот, от состояния 2 к состоянию 1, так называемые прямой и обратный процессы.
Обратимыми- называют процесс, в результате совершения которых в прямом и обратном направлениях термодинамическая система возвращается в исходное состояние; таким образом, совокупность прямого и обратного процессов не вызывает в окружающей среде никаких изменений.
Можно определить понятие обратимого процесса следующим образом: обратимый процесс-это такой процесс, который можно провести в обратном направлении, затрачивая работу, произведенную в прямом процессе.
В случае обратимых процессов обратный процесс представляет собой, так сказать, «зеркальное отображение» прямого процесса; если, например, в прямом процессе к системе подводится какое-то количество теплоты, то в обратном процессе от системы отводится точно такое же количество теплоты (и при той же температуре, при которой подводилось в прямом); если в прямом процессе система совершает работу над внешней средой, то в обратном процессе внешняя среда производит над системой работу, равную по абсолютной величине работе в прямом процессе; если в прямом процессе система расширяется, то в обратном процессе имеет место сжатие системы и т.д.
Необратимыми - называют процессы, при проведении которых в прямом и затем в обратном направлении система не возвращается в исходное состояние (т. е. в ходе процесса в системе происходят изменения, которые отличают ее состояние после проведения обратного процесса от состояния, в котором она находилась до проведения прямого процесса). Из повседневной практики известно, что все естественные самопроизвольные процессы, происходящие в природе, являются необратимыми; обратимых процессов в природе не существует.
Рассмотрим некоторые примеры необратимых процессов. Типичным примером необратимого процесса, сопровождающего многие процессы в природе, является уже упоминавшийся нами процесс прения. Работа, затрачиваемая на преодоление трения, необратимо превращается в теплоту, выделяющуюся при трении.
Важно отметить, что степень необратимости того или иного необратимого процесса может быть различной. Например, работа на преодоление сил трения будет затрачиваться и при движении полированного тела по полированной поверхности, и в случае, когда тело движется по грубо обработанной, шероховатой поверхности, но работа, переходящая в теплоту трения, во втором случае будет больше, чем в первом. Следовательно, во втором случае (шероховатая поверхность) необратимый процесс будет «дальше отстоять» от обратимого процесса, чем в первом (полированная поверхность). В дальнейшем в этой главе будет вреден объективный критерий для количественной оценки степени необратимости того или иного реального процесса.
Каждый из рассмотренных нами необратимых процессов можно осуществить и в обратном направлении, возвратив систему в исходное состояние, но для проведения такого обратного процесса среда, окружающая систему, должна совершить компенсирующий процесс (с затратой теплоты или работы).
При этом важно подчеркнуть, что необратимый процесс полностью (во всех звеньях) обратить нельзя - возвращение системы в исходное состояние осуществляется за счет необратимых изменений в окружающей систему среде.
Важно отметить также, что любой самопроизвольный (и, следовательно, необратимый) процесс, происходящий в системе (в том числе, разумеется, и все рассмотренные выше необратимые процессы), продолжается до тех пор, пока в системе не установится равновесие.
Итак, по завершении самопроизвольных процессов система обязательно приходит в состояние равновесия. Как показывает практика , система достигшая равновесия, в дальнейшем в этом состоянии и прибывает, это соответствует сформулированному ранее утверждению о том, что всякий самопроизвольный процесс необратим.
Важно отчетливо представлять себе, что состояние в системе может быть достигнуто посредством осуществления в этой системе как обратимых, так и необратимых процессов.
На основе выше сказанного не трудно прийти в выводу о том, что работа может производиться системой до тех пор, пока система не придет в состояния равновесия. В самом деле, было ранее отмечено, что в любом тепловом двигателе работа может быть получена только тогда, когда имеются минимум два источника теплоты горячий и холодный.
Чрезвычайно важно подчеркнуть следующее. Как уже отмечалось выше, степень необратимости того или иного необратимого процесса может быть различной. В принципе можно представить себе степень необратимости настолько малой, что процесс будет осуществляться практически обратимо (т. е. неизбежная в любом реальном процессе необратимость будет неуловимо малой).
Рассмотрим теперь схему осуществления почти обратимого процесса перехода теплоты (внешне обратимого процесса).
Как уже неоднократно отмечалось выше, теплота переходит от одного тела к другому только в том случае, если температуры этих тел различны. Таким образом, процесс перехода теплоты - это в принципе необратимый процесс.
Если же температуры тел различаются на бесконечно малую величину, то степень необратимости также является бесконечно малой, т. е. необратимый процесс перехода теплоты оказывается максимально приближенным к обратимому (хотя, подчеркнем еще раз, обратимый процесс перехода теплоты невозможен - как только этот процесс становится равновесным, т. е. температуры тел выравниваются, он прекращается).
Заметим, что если разность температур между телами бесконечно мала, то скорость процесса теплообмена между этими телами также будет бесконечно малой.
Также может возникнуть вопрос: почему столько внимания уделяется практически неосуществимым обратимым процессам - ведь, как отмечено выше, в природе нет строго обратимых процессов (и, следовательно, само понятие об обратимом процессе является абстракцией)? Положение здесь примерно то же самое, что и с равновесными и неравновесными процессами. Один и тот же необратимый процесс, например процесс перехода теплоты от более нагретого тела к менее нагретому, может иметь разную степень необратимости: процесс перехода теплоты от тела с температурой 100 °С к телу с температурой 20 °С «отстоит» от равновесного процесса гораздо дальше, чем процесс перехода теплоты от тела с температурой 20,01 °С к телу с температурой 20 °С. Для того чтобы представить себе внешне обратимый процесс, протекающий при переменной температуре рабочего тела, следует предположить, что вдоль пути процесса расположено бесконечно большое количество источников теплоты, каждый из которых имеет температуру, отличающуюся на бесконечно малую величину от температуры рабочего тела.
С этой точки зрения гипотетический обратимый процесс представляет собой тот предел (так сказать, нуль отсчета), с которым удобно сравнивать тот или иной необратимый процесс. Понятие об обратимом процессе имеет огромное практическое значение - как будет показано в дальнейшем, работа, которая может быть произведена системой при переходе в состояние равновесия, достигает максимального значения тогда, когда процесс изменения состояния этой системы обратим. Поэтому необходимо уметь сравнивать степень необратимости различных реальных процессов для того, чтобы свести ее к минимуму.
3.2 Формулировка второго закона термодинамики
Первый закон термодинамики, как уже сказано, характеризует процессы превращения энергии с количественной стороны. Второй закон термодинамики характеризует качественную сторону этих процессов. Первый закон термодинамики дает все необходимое для составления энергетического баланса какого-либо процесса. Однако он не дает никаких указаний относительно возможности протекания того или иного процесса. Между тем далеко не все процессы реально осуществимы.
Следует подчеркнуть, что второй закон термодинамики, так же как и первый, сформулирован на основе опыта.
В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым: этот достаточно очевидный вывод уже обсуждался нами в предыдущем параграфе. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки.
Р. Клаузиус в 1850 г. дал такую формулировку второго закона термодинамики: теплота не может сама собой переходить от более холодного тела к более нагретому.
В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.
М. Планк предложил формулировку, более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к поднятию некоторого груза и охлаждению теплового источника. Под периодически действующей машиной следует понимать двигатель, непрерывно (в циклическом процессе) превращающий теплоту в работу.
В самом деле, если бы удалось построить тепловой двигатель, который просто отбирал бы теплоту от некоторого источника и непрерывно (циклично) превращал его в работу, то это противоречило бы сформулированному ранее положению о том, что работа может производиться системой только тогда, когда в этой системе отсутствует равновесие (в частности, применительно к тепловому двигателю - когда в системе имеется разность температур горячего и холодного источников).
Если бы не существовало ограничений, накладываемых вторым законом термодинамики, то это означало бы, что можно построить тепловой двигатель при наличии одного лишь источника теплоты. Такой двигатель мог бы действовать за счет охлаждения, например, воды в океане. Этот процесс мог бы продолжаться до тех пор, пока вся внутренняя энергия океана не была бы превращена в работу.
Тепловую машину, которая действовала бы таким образом, В. Ф. Оствальд удачно назвал вечным двигателем второго рода (в отличие от вечного двигателя первого рода, работающего вопреки закону сохранения энергии). В соответствии со сказанным формулировка второго закона термодинамики, данная Планком, может быть видоизменена следующим образом: осуществление вечного двигателя второго рода невозможно.
Следует заметить, что существование вечного двигателя второго рода не противоречит первому закону термодинамики; в самом деле, в этом двигателе работа производилась бы не из ничего, а за счет внутренней энергии, заключенной в тепловом источнике, так что с количественной стороны процесс получения работы из теплоты в данном случае не был бы невыполнимым. Однако существование такого двигателя невозможно с точки зрения качественной стороны процесса перехода теплоты между телами.
Понятно далее, что поскольку, как отмечено выше, формулировки второго закона термодинамики имеют в конечном итоге одно и то же содержание, существование вечного двигателя второго рода противоречило бы второму закону и в формулировке Клаузиуса. Действительно, если предположить, что теплота может самопроизвольно переходить от нижнего температурного уровня к верхнему, то можно представить себе систему, в которой теплота q\самопроизвольно переходит от нижнего источника с температурой к верхнему с температурой верхний источник передает то же самое количество теплоты тепловому двигателю отдающему в некотором цикле полезную работу во внешнюю среду и возвращающему нижнему источнику теплоту, причем тепловой баланс верхнего источника равен нулю, ибо вся подводимая теплота отдается им двигателю. Таким образом, этот источник в действительности таковым не является, а играет роль регенератора теплоты.
Тепловой баланс нижнего источника отрицателен: источник передает теплоту, переходящую в полезную работу цикла. Таким образом, из нижнего источника отбирается теплота. При этом тепловой двигатель А работает при наличии только одного (нижнего) источника теплоты, что противоречит второму закону термодинамики в формулировке Планка. Таким образом, как формулировка Клаузиуса, так и формулировка Планка дают различные аспекты описания одного и того же закона природы - второго закона термодинамики.
В связи с тем, что, как отмечено выше, непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил и г. д. можно без остатка, полностью превратить в теплоту.
Что же касается теплоты, то только часть ее может быть превращена в периодически повторяющемся процессе в механическую и другие виды работ; другая ее часть неизбежно должна быть передана холодному источнику. Этой важнейшей особенностью тепловых процессов определяется то особое положение, которое занимает процесс получения работы из теплоты среди любых других способов получения работы. При каждом из этих способов преобразования часть энергии должна затрачиваться на неизбежные необратимые потери, такие как трение, электросопротивление, магнитная вязкость и др., переходя при этом в теплоту.
3.3 Энтропия
Перейдем теперь к рассмотрению некоторых важных свойств обратимых циклов.
Термический КПД обратимого цикла Карно определяется соотношением
nt = (Т1-Т2)/Т1
а в наиболее общем виде, по определению, термический КПД любого цикла
nt = (Q1 - Q2)/Q1
Отсюда следует, что для обратимого цикла Карно:
(T1-T2)/T1)= (Q1-Q2)/Q1
или, что то же самое,
Q1/T1=Q2/T2
В общем виде это соотношение может быть записано так:
Q1/T1+Q2/T2=0
Рассмотрим произвольный обратимый цикл. Напомним, что для его осуществления необходимо иметь бесконечно большое число источников теплоты, обозначим число уравнении n. C учетом уравнения
Получим:
В пределе, если рассматривать бесконечно малые циклы:
Отсюда, соответствии получаем:
Интеграл уравнения носит название, интеграла Клаузиуса. Оно показывает, что для любого обратимого цикла интеграл Клаузиуса равен нулю.
Выясним свойства выражения стоящего под интегралом. Введем для подынтегральной функции следящие обозначение:
Тогда уравнение
Примет вид:
Вспомним, что аналогичным свойством обладает круговой интеграл величины dU (U-внутренняя энергия). Теперь можно сказать, что значение криволинейного интеграла взятого по любому между двумя произвольными состояниями A и B не зависит от пути, по которому осуществляется процесс, а зависит только от конечных состояний между которыми осуществляется процесс.
Повторяя данные рассуждения для любого пути осуществления процесса изменения состояния между А и B получаем тот же результат.
Отсюда очевидно, что интеграл зависит от конечных состояний, между которыми осуществляется процесс.
Введенная Клаузисом функция S носит название - Энтропия.
Энтропия является экстенсивным свойством подобно другим экстенсивным величинам обладает свойством аддитивности:
s=S/G
s-это удельная энтропия, представляет собой энтропию единицы массы вещества.
Подобно любой другой функции состояния удельная энтропия системы может быть представлена в виде функций любых двух параметров состояния: x, y.
s=f(x,y)
Как видно из уравнения
dS=dQ/T,
энтропия имеет размерность теплоты деленная на единицу температуры.
Таким образом, наименование единицы энтропии совпадает с наименованием теплоемкости. Начало отсчета энтропии для чистого вещества и для смеси веществ, не вступающих между собой в химическую реакцию, может быть выбрано произвольно.
Из соотношения dS=dQ/T видно, что энтропия в различных процессах может возрастать, так и убывать: поскольку температура всегда положительна, из соотношения dS=dQ/T следует, что при подводе тепла к системе (dQ>0) и энтропия возрастает и наоборот.
Из соотношения dS=dQ/T, следует что в обратимом процессе изменения состояния тела от начального 1 до конечного 2 энтропия тела изменяется на:
Понятие энтропии позволяет ввести чрезвычайно важную для анализа циклов диаграмму (рис-2):
Рис-2
Количество теплоты, подведенной к системе в обратимом процессе осуществляется между состояниями 1-2 и равно:
Очевидно, что в диаграмме T,S количество теплоты полученной системой в обратимом процессе, изображается площадью под кривой процесса.
T, S диаграмма чем удобна, тем что на ней наглядно изображаются и количества теплоты, подводимой и отводимой в цикле, и работа, полученная в результате осуществления цикла.
Из уравнения dS=dQ/T следует, что в обратимом адиабатном процессе dQ=0.
Поэтому обратимые адиабатные процессы также называют изотропными, а кривую этого процесса изоэнтропой. Изображается она вертикальной прямой.
Следует заметить, что в диаграмме T,S могут быть изображены лишь обратимые, равновесные процессы.
Применение T,S диаграмм позволяет легко доказать справедливость следующего утверждения: термический КПД любого обратимого цикла, осуществляемого при числе источников теплоты больше двух, меньше термического КПД обратимого цикла Карно, осуществляемого между заданными предельными температурами.
Также следует отметить, что обратимый цикл Карно является своего рода эталоном, по сравнению с которым можно определять степень эффективности того или иного цикла, осуществляемого в том же ,что и цикл Карно, интервале температур.
Наконец можно сказать, что термический КПД любого обратимого цикла меньше термического КПД обратимого циклы Карно, осуществляемого между крайними температурами этого цикла, а термический КПД любого необратимого цикла меньше термического КПД такого же обратимого цикла, то следовательно, термический КПД любого необратимого цикла заведомо меньше термического КПД обратимого цикла Карно, осуществляемые между теми же тепловыми источниками.
3.4 Объединённое уравнение первого и второго законов термодинамики
Аналитически второй закон термодинамики выражается в виде соотношения:
dS ?dQ/T
где знак равенства соответствует обратимым, а знак неравенства необратимым процессам.
Соответственно для единицы массы вещества:
T ds?dq
Напомним, что в соответствии с уравнением первого закона термодинамики
dQ=dU+dL,
а для единицы массы вещества
dq=du+dl.
Или тоже самое:
dQ=dU+pdV+dL
dq=du+pdv+dl
Подставляя эти значения соответственно получаем:
T dS?dU+dL
TdS?du+dl
Эти соотношения называют объединёнными уравнениями первого и второго законов термодинамики.
В дальнейшим их можно применять для систем находящихся в равновесном состоянии.
4. Абсолютная энтропия
Абсолютное значение энтропии полученное при интегрировании для обратимых процессов , известно с точностью до постоянной интегрирования.
Значение этой постоянной устанавливается третьим законом термодинамики:
При нулевой абсолютной температуре энтропия любых веществ, находящихся в равновесном состоянии, имеет одно и то же значение, не зависящее от фазового состояния вещества. В изотермических процессах, происходящих при T=0, энтропия не зависит ни от обобщенных сил , ни от обобщенных координат.
Так как при 0 К энтропия всех веществ одинакова, то конкретное значение S0 не существенно и его можно принять равным нулю(Постулат Планка).
При абсолютном нуле все идеальные кристаллы имееют одинаковую энтропию, равную нулю.
Постулат Планка позволяет ввести понятие абсолютной энтропии вещества. Используя понятие абсолютной энтропии, следует помнить, что вывод о постоянстве S0 относиться лишь к равновесным при 0 К системам.
Справедливость постулата Планка подтверждается статическим толкованием понятие «энтропии». Статистическое определение энтропии основано на идее о том, что необратимые процессы в термодинамике вызваны переходом системы в более вероятное состояние, поэтому энтропию можно связать вероятностью:
S=k lnW
где k-постоянная Больцмана;
W-так называемая термодинамическая вероятность.
Формула S=k lnW, называют формулой Больцмана
Заключение
В связи с тем, что непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил и т.д. можно без остатка превратить в теплоту. Что же касается теплоты, то только часть ее может быть превращена в периодически повторяющемся процессе в механическую и другие виды работ; другая ее часть неизбежно должна быть передана холодному источнику.
Этой важнейшей особенностью тепловых процессов определяется то особое положение, которое занимает процесс получения работы из теплоты любых других способов получения работы (например, получения механической работы за счет кинетической энергии тела, получения электроэнергии за счет механической работы, производства работы магнитным полем за счет электроэнергии и т.д.). При каждом из этих способов преобразования часть энергии должна затрачиваться на неизбежные необратимые потери, такие как трение, электросопротивление, магнитная вязкость и др., переходя при этом в теплоту.
термодинамика энтропия необратимый концентрация
Список литературы
1. Кириллин В.А. и др. Техническая термодинамика: Учебник для вузов.- 4-е изд., перераб.- М.: Энергоатомиздат, 2003.
2. Основы теплотехники /В.С. Охотин, В.Ф. Жидких, В.М. Лавыгин и др.- М.: Высшая школа, 2002.
3. Поршаков Б.П., Романов Б.А. Основы термодинамики и теплотехники.- М.: Недра, 2004.
4. Теплотехника /под ред. В.И. Крутова.- М.: Машиностроение, 2002.
Размещено на Allbest.ru
Подобные документы
Использование энергии топлива в работе различных машин, аппаратов, энергетических и технологических установок. Определения термодинамики: второй закон, энтропия, расчет ее изменения. Абсолютная энтропия, постулат Планка; необратимость тепловых процессов.
курсовая работа [520,7 K], добавлен 08.01.2012Обратимые и необратимые термодинамические процессы. Диссипативные динамические системы. Термодинамическая энтропия. Флуктуация основных термодинамических величин. Закон сохранения энергии в адиабатическом процессе. Средние квадраты флуктуации энергии.
реферат [116,2 K], добавлен 18.12.2013История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.
реферат [21,5 K], добавлен 26.02.2012Первый закон термодинамики. Обратимые и необратимые процессы. Термодинамический метод их исследования. Изменение внутренней энергии и энтальпии газа. Графическое изображение изотермического процесса. Связь между параметрами газа, его теплоемкость.
лекция [438,5 K], добавлен 14.12.2013История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.
реферат [42,1 K], добавлен 25.02.2012Первое начало термодинамики. Однозначность внутренней энергии как функции термодинамического состояния. Понятие энтропии. Второе начало термодинамики для равновесных систем. Третье начало термодинамики.
лекция [197,4 K], добавлен 26.06.2007Основные понятия. Температура. Первый закон термодинамики. Термохимия. Второй закон термодинамики. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.
лекция [202,7 K], добавлен 03.12.2003Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013Теоретические аспекты энтропии, энергии и энергетики, разновидности энергетики и энтропии. Роль в физических процессах и науке. Особенности термодинамики неравновесных процессов. Вклад И. Пригожина в развитие термодинамики, значение для современной науки.
курсовая работа [109,3 K], добавлен 12.01.2010Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.
реферат [136,5 K], добавлен 23.01.2012