Трансформаторы

Рассмотрение истории создания и принципа действия трансформатора. Анализ областей применения трансформаторов. Общее устройство и назначение трансформаторов для бытовой радиоэлектронной аппаратуры. Расчет изготовления силового трансформатора.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.05.2014
Размер файла 201,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПРОФЕССИОНАЛЬНЫЙ ЛИЦЕЙ №4

«Трансформаторы»

Выполнил: Комиссаров Д.В.

Преподаватель: Антонова Т.А.

г. Пенза

1999г.

План

Трансформатор: создание и принцип действия

Области применения трансформаторов

Общее устройство и назначение трансформаторов для бытовой радиоэлектронной аппаратуры

Расчёт силового трансформатора

1. Трансформатор: создание и принцип действия

бытовой устройство силовой трансформатор

Одним из важнейших преимуществ переменного тока перед постоянным является легкость и простота, с которой можно преобразовать переменный ток одного напряжения в переменный ток другого напряжения. Достигается это посредством простого и остроумного устройства - трансформатора, созданного в 1876 г. замечательным русским ученым Павлом Николаевичем Яблочковым.

П.Н. Яблочков предложил способ “дробления света” для своих свечей при помощи трансформатора. В дальнейшем конструкцию трансформаторов разрабатывал другой русский изобретатель И.Ф. Усагин, который предложил применять трансформаторы для питания не только свечей Яблочкова, но и других приемников.

В дальнейшем несколько конструкций однофазных трансформаторов с замкнутым магнитопроводом были созданы венгерскими электротехниками О. Блати, М. Дери и К. Циперновским. Для развития трансформаторостроения и вообще электромашиностроения большое значение имели работы профессора А.Г. Столетов по исследованию магнитных свойств стали и расчету магнитных цепей.

Важная роль в развитии электротехники принадлежит М.О. Доливо-Добровольскому. Он разработал основы теории многофазных и, в частности, трехфазных переменных токов и создал первые трехфазные электрические машины и трансформаторы. Трехфазный трансформатор современной формы с параллельными стержнями, расположенными в одной плоскости, был сконструирован им в 1891 г. С тех пор происходило дальнейшее конструктивное усовершенствования трансформаторов, уменьшалась их масса и габариты, повышалась экономичность. Основные положения теории трансформаторов были разработаны в трудах Е. Арнольда и М. Видмара.

В развитии теории трансформаторов и совершенствовании их конструкции большое значение имели работы советских ученых В.В. Корицкого, Л.М. Пиотровского, Г.Н. Петрова, А.В. Сапожникова, А.В. Трамбицкого и др.

Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.

С допустимой для практики точностью можно считать, что отношение числа витков первичной обмотки к вторичной равно отношению приложенного напряжения к выходному.

Это отношение, называемое коэффициентом трансформации, обычно сокращают на меньшее из чисел, и тогда коэффициент трансформации получают в виде отношения единицы к некоторому числу (1:4; 1:50) или, наоборот, некоторого числа к единице (4:1; 50:1).

В радиоаппаратуре трансформаторы используются в первую очередь в питающих устройствах, позволяющих питать приемники от осветительной сети переменного тока. Такие трансформаторы называются силовыми. Кроме того, трансформаторы используются для понижения и повышения напряжения различной частоты в усилителях и радиоприемниках. Для низких (звуковых) частот эти трансформаторы изготовляются с сердечниками из листовой стали. Для токов сравнительно высокой частоты трансформаторы, как и катушки индуктивности, делаются или совсем без стальных сердечников или с сердечниками из магнетита, альсифера, карбонильного железа и других специальных металлов.

Иногда для экономии провода и стали применяют трансформаторы, в которых одна обмотка является частью другой, то есть гальванической развязки между входной и выходной цепью нет. Такие трансформаторы, называют автотрансформаторами, они могут повышать напряжение, для чего обмотка, включаемая в сеть, должна составлять часть обмотки, дающей выходное напряжение, и понижать его, для чего обмотка, с которой снимается напряжение, должна составлять часть сетевой обмотки.

Применение автотрансформаторов в радиоприемниках связано с некоторыми неудобствами, поэтому в любительских и улучшенных промышленных радиоприёмниках автотрансформаторы широкого распространения не получили. В основном они нашли применение в дешевых массовых промышленных приемниках, а также в качестве устройств для поддержания необходимого напряжения при питании радиоприемников от осветительной сети, напряжение которой подвержено колебаниям.

2. Области применения трансформаторов

Трансформаторы широко используются для следующих целей:

Для передачи и распределения электрической энергии.

В настоящие время для высоковольтных линий электропередач применяются силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 кВ, мощностью до 1200 - 1600 МВ*А.

Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на входе и выходе преобразователя.

Трансформаторы, применяются для этой цели, называются преобразовательными. Их мощность достигает тысячи киловольт-ампер, напряжение 110 кВ; они работают при частоте 50 Гц и более. Рассматриваемые трансформаторы выполняют одно-, трех- и многофазными с регулированием выходного напряжения в широких пределах и без регулирования.

Для различных технологических целей: сварки (сварочные трансформаторы), питание электротермических установок (электропечные трансформаторы) и др. Мощность их достигает десятков тысяч киловольт-ампер при напряжение до 10 кВ; они работают обычно при частоте 50 Гц.

Для включение электроизмерительных приборов и некоторых аппаратов, например реле, в электрические цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности.

Трансформаторы, применяемые для этой цели, называются измерительными. Они имеют сравнительно большую мощность, определяемую мощность, потребляемой электроизмерительными приборами, реле и др.

Для питания различных цепей радио- и телевизионной аппаратуры; устройств связи, автоматики и телемеханики, электробытовых приборов; для разделения электрических цепей различных элементов этих устройств; для согласования напряжений и т.п.

Трансформаторы, используемые в этих устройствах, обычно имеют малую мощность (от нескольких вольт-ампер до нескольких киловольт-ампер), невысокое напряжение, работают при частоте 50 Гц и более. Их выполняют двух-, трех- и многообмоточными; условия работы, предъявляемые к ним требования и принципы проектирования весьма специфичны.

Как правило, трансформаторы питания изготавливаются комбинированными, т.е. позволяющими снимать несколько напряжений; при этом первичная обмотка (сетевая) может быть выполнена в виде одной обмотки с двумя отводами или двух одинаковых обмоток с одним отводом в каждом из них. Во втором варианте первичная обмотка на различные напряжения (110, 127 или 220 В) переключается специальным сетевым переключателем.

Повышающая обмотка трансформатора питания выполняется со средним выводом при использовании двухполупериодного выпрямителя на двух диодах и без среднего вывода для мостовой схемы выпрямителя.

3. Общее устройство и назначение трансформаторов для бытовой радиоэлектронной аппаратуры

Общее устройство трансформатора видно из представленного рисунка - это магнитопровод, набранный из отдельных пластин; обмотки, выполненные проводом; каркас из изоляционного материала, на котором намотаны обмотки.

Трансформатор, входящий в состав выпрямителя и предназначенный для питания лампового радиоприёмника, имеет следующие обмотки:

первичную, включаемую в сеть;

вторичную повышающую, дающую выпрямляемое напряжение;

вторичную понижающую, дающую напряжение для накала кенотрона;

вторичную понижающую, дающую напряжение для накала усилительных ламп радиоприёмника.

Иногда между первичной и вторичной обмотками помещается ещё экранная обмотка, предназначенная для защиты приемника от проникновения в него из сети всевозможных помех. Один конец этой обмотки заземляется, а другой изолирован и никуда не включается.

Первичная обмотка делается из нескольких секций, позволяющих включать трансформатор в сеть с различным напряжением.

Напряжение сети нередко колеблется под влиянием изменения нагрузки. Днем оно бывает нормальным, например 220 В, а вечером падает до 180-190 В, ночью и ранним утром повышается до 230-240 В. В таких случаях первичную обмотку иногда разбивают на ещё более мелкие секции (делают отводы, рассчитанные на напряжение 90, 100, 110, 120, 130, 180, 200, 220 и 240 В). Такая секционированная первичная обмотка позволяет подключать к сети количество витков, соответствующее фактическому напряжению, и таким образом обеспечивает нормальные напряжения для работы приемника.

Если от сети с колеблющимся напряжением питается радиоприемник или какое-либо другое радиоустройство, трансформатор которого не имеет подобных мелкосекционированных обмоток, приходится прибегать к помощи автотрансформатора. Последний специально изготовляется с большим числом отводов, переключая которые можно регулировать напряжение, подводимое к приемнику.

Вторичная повышающая обмотка силового трансформатора при однополупериодном выпрямлении состоит из одной секции без всяких отводов, а при двухполупериодном выпрямлении она рассчитывается на вдвое большее напряжение и имеет отвод от средней точки.

На качество изготовления вторичной обмотки должно быть обращено особое внимание, так как в ней получаются высокие напряжения. Для получения хорошего сглаженного тока при двухполупериодном выпрямлении обе половины повышающей обмотки должны быть совершено одинаковы. Поэтому их лучше наматывать не одну поверх другой, а располагать в соседних секциях каркаса.

Накальные обмотки трансформаторов наматываются из относительно толстого провода (1-2 мм). Обмотка накала кенотрона в схеме выпрямителя соединена с плюсом высокого напряжения, поэтому она должна быть особенно тщательно изолирована от сердечника трансформатора, других его обмоток и экрана.

Все обмотки трансформатора для лучшего использования его объема и для предохранения от пробоя изоляции проводов следует наматывать аккуратно, виток к витку. Слои обмоток нужно отделить один от другого тонкой пропарафинированной бумагой, а между обмотками прокладывать слой изолировочной ленты, тонкого электрокартона или два-три слоя лакоткани (специально изоляционной ткани, пропитанной лаком).

Чтобы крайние витки сползали в щель между щечкой каркаса и краем обмотки и верхние витки не касались нижних, находящихся под большим напряжением один относительно другого, прокладки следует делать на 6-8 мм шире длины каркаса, а края этой прокладки надрезаны и загнуты.

Каркас для намотки трансформатора обычно изготовляется из специального электрокартона или обычного плотного картона. Размеры каркаса определяются размерами стального сердечника трансформатора.

Сердечник трансформатора для уменьшения в нем вихревых токов изготовляется из тонких листов (0,35-0,5 мм) специальное трансформаторной стали. Каждая пластина трансформатора с одной стороны оклеивается тонкой папиросной бумагой или покрывается слоем изолирующего лака. Используемые в настоящее время трансформаторные пластины чаще всего имеют Ш-образную форму. Применяются также пластины Г-образной формы.

После намотки трансформатора каркас должен быть возможно плотнее заполнен трансформаторной сталью. Набивать силовой трансформатор надо в перекрышку: на то место, где был стык пластин, следующие пластины класть сплошной частью. Все пластины кладутся изолированной поверхностью в одну сторону.

Пластины трансформатора должны быть туго стянуты болтами, проходящими через специальные отверстия. Если пластины не имеют отверстий, они стягиваются при помощи стальных обжимок или деревянных брусочков.

Выходной трансформатор.

Кроме силовых трансформаторов, в ламповых радиоприемниках и усилителях употребляют выходные, междуламповые (или переходные) и входные (в усилителях низкой частоты) трансформаторы.

Выходные трансформаторы применяются для согласования сопротивления громкоговорителя с сопротивлением анодной цепи выходной лампы. Согласование это необходимо для того, чтобы можно было получить от лампы ту мощность, на которую она рассчитана. Отдать же наибольшую мощность лампа может только в том случае, если в анодной цепи ее стоит нагрузка с сопротивлением, являющимся оптимальным для данной лампы. В справочниках эта оптимальная нагрузка обозначается обычно Rа или Rа опт.

Анодная нагрузка выходных низкочастотных ламп составляет обычно несколько тысяч ом, в то время как сопротивление обмоток современных громкоговорителей равна единицам ом. Если громкоговоритель с такой низкоомной звуковой катушкой включить прямо в анодную цепь лампы, то только маленькая доля мощности будет расходоваться на громкоговорителе, а вся остальная мощность будет бесполезно тратиться на нагрев лампы. При включение же в анодную цепь лампы понижающего трансформатора, к выходной обмотке которого подключен громкоговоритель, положение резко изменится.

Трансформатор, понижая напряжение, действующее в анодной цепи лампы, в то же время как бы “повышает” сопротивление, подключенное к анодной цепи. Если коэффициент трансформации выходного трансформатора равен 20:1, т.е. во вторичной (выходной) обмотке в 20 раз меньше витков, чем в первичной (анодной), то напряжение, подводимое к громкоговорителю, будет в 20 раз меньше действующего на аноде лампы, а сопротивление, “ощущаемое” лампой, станет в 400 раз больше сопротивления обмотки громкоговорителя, т.е. возрастет в 20*20=202 раз.

Расчет выходного трансформатора сложен для начинающего радиолюбителя, поэтому в таблице приведены данные обмоток выходных трансформаторов для наиболее употребляемых выходных ламп и громкоговорителей.

Таблица 1. - Данные наиболее употребляемых выходных трансформаторов.

Сопротивление анодной нагрузки в ом

Кол-во витков вторичной обмотки при первичной обмотке, имеющей 2 400 витков

Сопротивление звуковой катушки динамического громкоговорителя

2 ом

2,2 ом

2,8 ом

3,0 ом

3,4 ом

3,8 ом

4,3 ом

10 ом

2 000

76

80

90

92

100

104

110

170

2 500

70

72

80

83

90

93

100

150

3 000

62

65

73

76

81

86

91

140

4 500

50

53

60

62

66

70

74

112

5 000

48

50

57

60

62

66

70

108

5 500

46

48

55

56

60

63

66

102

7 000

41

42

48

50

53

56

60

90

8 000

38

40

45

46

50

52

56

86

8 500

37

39

43

45

48

50

54

83

12 000

30

32

36

38

40

42

45

70

30 000

20

21

23

24

26

27

28

44

Примечание. Для мощностей до 1 Вт сечение сердечника должно быть 2,5 - 3 см2; первичная обмотка наматывается проводом ПЭ диаметром 0,1 - 0,12 мм, вторичная - проводом ПЭ диаметром 0,6 - 0,7 мм. Для мощностей 1 - 3 Вт сечение сердечника 4 - 5 см2; первичная обмотка наматывается проводом ПЭ диаметром 0,12 - 0,15 мм, вторичная - проводом ПЭ диаметром 0,7 - 0,9 мм.

Надо указать на особенность сборки сердечников выходных трансформаторов. Здесь, так же как и в дросселях фильтра, пластины сердечника собираются встык с зазором между пакетами пластин в 0,1 - 0,2 мм. Необходимо это потому, что при отсутствии зазора постоянный анодный ток лампы, проходящий через трансформатор, может слишком сильно намагнитить сердечник, вследствие чего индуктивность трансформатора уменьшится, а это приведет к ухудшению трансформирования нижних звуковых частот.

Входные трансформаторы.

Входные трансформаторы служат для согласования входа усилителя звуковой частоты с микрофоном, звукоснимателем или магнитной головкой. Так как максимальная амплитуда переменного напряжения для входных трансформаторов бывает не более 1В, то их изготовляют повышающими. Входные трансформаторы должны иметь повышенную помехозащищенность и слабую чувствительность к воздействию внешних магнитных полей, так как в противном случае в них могут появиться значительные напряжения помех.

Для уменьшения помех входные трансформаторы тщательно экранируют, оси их обмоток располагают перпендикулярно к магнитным силовым линиям источника помех, а также принимают меры по возможно большему удалению входных цепей от выходного трансформатора и трансформатора питания. Учитывая, что наименьшей чувствительностью к воздействию внешних магнитных полей обладают трансформаторы с магнитопроводами броневого или тороидального типа, входные трансформаторы изготавливаются на штампованных или ленточных сердечниках из пермаллоя. 80НХС или 79НМ, а также из стали. Входные трансформаторы помещают в экран или опрессовывают пластмассой. Их крепят на печатных платах с помощью “лапок” или непосредственно пайкой выводов из луженой проволоки диаметром 1 - 1,5 мм.

Междуламповые и междукаскадные трансформаторы.

Междукаскадные трансформаторы применяются для связи в УЗЧ, получающих питание от автономных источников, так как в этом случае от усилителя необходимо получить максимальный коэффициент усиления при минимальном количестве транзисторов и радиоламп.

Конструктивно междукаскадные трансформаторы не отличаются от входных. Они изготавливаются с коэффициентом трансформации не более чем 1:4, так как больший коэффициент вызывает большие гармонические искажения.

Междуламповые трансформаторы употребляются, когда при ограниченном количестве ламп и небольшом анодном напряжении необходимо получить большое усиление. Такие требования часто предъявляются к батарейным радиоприемникам.

Междуламповые трансформаторы большей частью делают с малым сечением стального сердечника (1,5 - 3 см2). Первичные обмотки, включаемые в анодную цепь лампы, обычно состоят из 3000 - 5000 витков эмалированного провода диаметром 0,08 - 0,1 мм. Вторичные обмотки трансформаторов имеют от 6000 до 20 000 витков того же провода, что и первичная обмотка.

Коэффициент трансформации междуламповых трансформаторов, т.е. отношение количества витков первичной обмотки к количеству витков вторичной обмотки, берутся в пределах от 1:2 до 1:5.

Казалось бы, что для большего усиления надо иметь большие коэффициенты трансформации. Однако при повышении коэффициента трансформации даже только до 1:4, 1:5 трансформаторы уже дают заметно худшее качество воспроизведения звука, чем трансформаторы с коэффициентом 1:2. Причина в том, что при очень большом количестве витков во вторичной обмотке ее собственная емкость становится настолько большой, что ухудшает трансформацию верхних звуковых частот.

Кроме того, намотанный тонким проводом междуламповый трансформатор является наиболее надежной деталью приемника или усилителя.

Поэтому по возможности междуламповый трансформатор не следует применять.

Применение переходных трансформаторов в сетевых приемниках нежелательно ещё потому, что при использовании междулампового трансформатора очень трудно избавится от прослушивания фона переменного тока. Это явление вызывается тем, что магнитный поток силового трансформатора не весь замыкается по сердечнику. Часть потока проходит в окружающем пространстве, пересекает витки обмотки междулампового трансформатора и наводит в нем переменное напряжение. Наведенное напряжение усиливается и, попадая в громкоговоритель, создает неприятное гудение.

4. Расчет силового трансформатора

Силовой трансформатор принадлежит к деталям, которые радиолюбителю приходится часто изготовлять самому. Поэтому необходимо уметь определять данные силового трансформатора и рассчитывать его. Это задача несложная и вполне доступная начинающему радиолюбителю.

Расчет слагается из следующих этапов:

В зависимости от назначения устройства, для питания которого рассчитывается силовой трансформатор, устанавливаются число обмоток трансформатора и их токи и напряжения. Затем подсчитывается суммарная полезная мощность трансформатора, для чего находятся мощность, отдаваемые каждой вторичной обмоткой трансформатора (путем перемножения величины тока на напряжение).

Находится мощность, потребляемая от сети трансформатором. Как известно, при работе трансформатора в нем происходят потери (на вихревые токи, перемагничивание стали и нагрев обмоток), по этому мощность, потребляемая трансформатором от сети, будет примерно в 1,25 раз больше полезной отдаваемой мощности.

Pпотр=1,25*Pпол

Определяется сечение стального сердечника трансформатора, необходимое для данной потребляемой мощности, по графику 1.

По найденному сечению сердечника и по размерам имеющихся подходящих трансформаторных пластин определяется форма сердечника (прежде всего толщина пакета стали б, как показано на графике) и устанавливается форма и размер каркаса трансформатора.

Определяется число витков обмотки, проходящих на 1 В напряжения трансформатора (сокращенное “число витков на вольт”), по графику 2.

Подсчитываются числа витков всех обмоток из соотношений:

WI = W* U,

где: WI - число витков первичной обмотки, вит.;

W - число витков на вольт, вит/В.;

U - напряжение сети, В.

WII = W* U2,

где: WII - число витков вторичной обмотки, вит.;

W - число витков на вольт, вит/В.;

U - напряжение, даваемое вторичной обмоткой, В.

По величинам токов, протекающих по различным обмоткам, определяются диаметры проводов этих обмоток по графику 3.

Причем величина тока первичной обмотки находится в результате деления потребляемой трансформатором мощности на напряжение сети, а величина тока в анодной обмотке при двухполупериодном выпрямлении берется равной половине выпрямленного тока (в этом случае каждая половина повышающей обмотки пропускает ток только в течение “своего” полупериода, т.е. половину выпрямленного тока).

На этом простейший расчет трансформатора может считаться оконченным, поскольку все необходимые данные для его изготовления найдены. Однако в заключение следует проверить, уместится ли в “окне” сердечника рассчитанные обмотки. Для этого подсчитывается площадь, занимаемая каждой обмоткой:

Sоб =W / Ws ,

где: Sоб - площадь, занимаемая одной обмоткой, см2;

W - количество витков данной обмотки, вит.;

Ws - количество витков, умещающихся в см2 сечения обмотки, вит.

Число витков, умещающихся в одном квадратном сантиметре сечения обмотки, находится для данного диаметра провода из таблицы 2.

Таблица 2. - Зависимость числа витков, укладывающихся в одном квадратном сантиметре сечения обмотки, от диаметра провода.

Диаметр провода без изоляции, мм

Число витков, умещающихся в одном см2 сечения обмотки

Диаметр провода без изоляции, мм

Число витков, умещающихся в одном см2 сечения обмотки

0,10

5 000

0,6

175

0,12

3 200

0,7

130

0,14

2 500

0,8

100

0,16

2 000

0,9

90

0,18

1 660

1,0

68

0,20

1 380

1,1

55

0,22

1 120

1,2

48

0,25

910

1,3

40

0,30

650

1,4

36

0,35

480

1,5

31

0,40

375

1,6

25

0,45

250

Рассчитаем трансформатор для двухлампового усилителя, работающих на лампах 6Ж7 и 6П6С.

В справочниках по лампам находим напряжения и токи, требующиеся для данных ламп.

Для накала этих ламп необходимо напряжение 6,3 В, при этом лампа 6Ж7 потребляет ток 0,3 А, а 6П6С -0,45 А. Для питания анодных цепей и цепей экранирующих сеток необходимо напряжение 200-250 В. При этом анодный ток лампы 6Ж7 составит 2 мА, ток экранирующей сетки - 0,5 мА. Всего эта лампа будет потреблять ток 2,5 мА. Анодный ток лампы 6П6С равен 45 мА, а ток экранирующей сетки - 4,5 мА. Всего она потребляет 49,5 мА.

Поскольку общее потребление тока от источника высокого напряжения составляет

49,5+2,5=52 мА,

т.е. оно сравнительно невелико, то можно применить схему однополупериодного выпрямителя как более простую, а кенотрон взять самый маломощный типа 6Ц5С. применение его позволит обойтись одной обмоткой накала, так как катод в этом кенотроне изолирован от нити накала, а последняя требует, как и нити накала усилительных ламп, напряжение 6,3 В. Ток, потребляемый на накал кенотроном, равен 0,6 А.

Таким образам, трансформатор должен иметь всего три обмотки:

Первичную на 220 В с отводами для питания от сети напряжением в 127 и 110 В;

Вторичную для питания анодных цепей напряжением 220 В при найденной величине тока в 52 мА;

Вторичную для питания накала ламп напряжением 6,3 В при токе

0,3+0,45+0,6=1,35 А.

Мощность, потребляемая от анодной обмотки,

220*0,052=11,4 Вт.

Мощность, потребляемая от накальной обмотки,

6,3*1,35=8,5 Вт.

Общая потребляемая от трансформатора мощность

11,4+8,5=19,9 Вт.

Мощность, потребляемая трансформатором от сети,

1,25*19,9=25 Вт.

Сечение сердечника при мощности 25 вт (по графику №1) должен быть равно 6 см2.

При этом подходящими трансформаторными пластинами будут пластины типа Ш-19, Ш-20 и Ш-24.

Число витков на вольт при сечение железа в 6 см2 (по графику №2) должно быть равно 9,5 витка на вольт.

Число первичной обмотки

9,5*220=2090 витков.

Отводы надо будет сделать от

9,5*127=1260 витков.

и

9,5*110=1045 витков.

Число витков анодной обмотки

9,5*220=2090 витков.

Число витков накальной обмотки

9,5*6,3=60 витков.

Определяем по графику №3 диаметр проводов обмоток в зависимости от протекающих по ним токов.

Диаметр провода анодной обмотки может быть взят от 0,13 до 0,16 мм. Из таблицы 2 найдем, что при диаметре 0,16 мм число витков, умещающихся в одном квадратном сантиметре сечения обмотки, равно 2000.

Диаметр провода накальной обмотки может быть взят от 0,75 до 0,90 мм (при диаметре 0,8 мм число витков, умещающихся в одном квадратном сантиметре сечения обмотки, равно 100).

Ток первичной обмотки при питании от сети напряжением 110 В будет

25/110=0,23 А.

При таком токе диаметр провода должен быть взят в пределах 0,3-0,35 мм.

При напряжении в сети 220 В ток будет вдвое меньше, что позволит для соответствующей части обмотки взять провод несколько меньшего диаметра (от 0,2 до 0,25 мм). Однако в данном трансформаторе (сравнительно маломощном) применять для первичной обмотки провода разных диаметров нецелесообразно. Можно для всей обмотки использовать провод диаметром 0,3-0,35 мм.

При диаметре 0,3 мм число витков, умещающихся в одном квадратном сантиметре сечение обмотки, равно 650.

В заключение проверим, уместиться ли обмотки в “окне” трансформатора.

Предположим, что для сердечника выбрана трансформаторная сталь типа Ш-20, у которой “окно” имеет площадь

1,75*4,7=8,23 см2.

Площадь, занимаемая первичной обмоткой,

2090/650=3,21 см2.

Площадь, занимаемая анодной обмоткой,

2090/2000=1,04 см2.

Площадь, занимаемая накальной обмоткой,

60/100=0,60 см2.

Общая площадь

3,21+1,04+0,60=4,85 см2.

Отношение площадей

4,85/8,23”0,59,

что значительно меньше 0,75.

Следовательно, рассчитанные обмотки легко уместятся на выбранном сердечнике.

Список используемой литературы

1. Боровик С.С., Бродский М.А. Ремонт и регулировка бытовой радиоэлектронной аппаратуры. Вышэйшая школа. Минск, 1989.

2. Брускин Д.Э. и др. Электрические машины. Т.1. Высшая школа. М., 1987.

3. Кабардин О.Ф. Физика. Справочные материалы. Просвещение. М., 1991.

4. Костыков Ю.В., Ермолаев Л.Н. Первая книга радиолюбителя. Воениздат МО СССР. М., 1955.

5. Кузнецов М.И. Основы электротехники. Трудрезервиздат. М., 1957.

6. Сворень Р.А. Электроника шаг за шагом. Детская литература. М., 1991.

Размещено на Allbest.ru


Подобные документы

  • Общее устройство и классификация трансформаторов. Осуществление преобразования энергии с помощью переменного магнитного поля. Конструктивные особенности некоторых видов трансформаторов. Практическое применение и расчет сетевого (силового) трансформатора.

    контрольная работа [545,9 K], добавлен 04.01.2010

  • Масляные трансформаторы, их устройство и назначение. Установка, ремонт и замена масляных трансформаторов. Правила по электрической безопасности при эксплуатации трансформаторов. Эксплуатация масляных трансформаторов на примере трансформатора ТМ-630.

    курсовая работа [718,0 K], добавлен 28.05.2014

  • Устройство, назначение и принцип действия трансформаторов. Расчет электрических величин трансформатора и автотрансформатора. Определение основных размеров, расчет обмоток НН и ВН, параметров и напряжения короткого замыкания. Расчет системы охлаждения.

    реферат [1,6 M], добавлен 10.09.2012

  • История изобретения, устройство и классификация трансформаторов как электромагнитных устройств для преобразования переменного тока посредством индукции. Базовые принципы действия трансформатора. Анализ закона Фарадея. Уравнения идеального трансформатора.

    презентация [2,6 M], добавлен 23.12.2012

  • Назначение и типы трансформаторов; конструктивная схема. Проект силового трансформатора мощностью 400 кВА: определение основных электрических величин, расчет обмоток высокого и низкого напряжения, магнитной системы и параметров короткого замыкания.

    курсовая работа [1,1 M], добавлен 21.12.2012

  • Развитие трансформаторостроения. Обмотки трансформатора. Устройство силового трансформатора. Повреждения и ненормальные режимы работы силовых трансформаторов. Отличия сухого, масляного, однофазного, трехфазного понижающего и повышающего трансформатора.

    презентация [3,2 M], добавлен 25.10.2016

  • Активные части трансформатора: магнитопровод и обмотки. Сборка магнитопровода из анизотропной холоднокатаной стали. Устройство конструктивных частей силового масляного трехфазного трансформатора и его общая компоновка. Изоляция обмоток трансформатора.

    реферат [1,5 M], добавлен 15.05.2010

  • Устройство силовых трансформаторов. Этапы расчета электрических величин: проектирование трансформатора, выбор основных размеров, электромагнитные нагрузки. Краткие сведения об обмотках трансформаторов. Эксплуатационные требования. Изоляционные промежутки.

    курсовая работа [1,0 M], добавлен 28.12.2010

  • Преобразование с помощью трансформатора переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз. Устройство трансформатора, принцип его работы и функции. Классификация трансформаторов. Особенности линий электропередач.

    презентация [1,8 M], добавлен 12.04.2012

  • История создания трансформаторов. Магнитная система (магнитопровод) трансформатора. Виды трансформаторов, срок службы. Работа в параллельном режиме. Регулирование напряжения трансформатора. Применение в электросетях, в источниках электропитания.

    реферат [544,8 K], добавлен 29.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.