Третье начало термодинамики
Изложение теоремы Нернста (третье начало термодинамики), её описание как физического принципа, определяющего поведение энтропии при приближении температуры к абсолютному нулю. Формулировка третьего начала термодинамики Максом Планком. Значение теоремы.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.05.2014 |
Размер файла | 42,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
Сибирский государственный индустриальный университет
Кафедра физики
РЕФЕРАТ
Третье начало термодинамики
Выполнил: студент гр. С-132
Игнатов А.И.
проверил: Громов В.Е
проф., д-р физ.-матем. наук
г. Новокузнецк 2014
Содержание
Введение
1. Определение
2.Формулировка
3.Следствия
Заключение
Список литературы
Введение
Открытие третьего начала термодинамики связано с нахождением химического средства - величины, характеризующей способность различных веществ химически реагировать друг с другом. Эта величина определяется работой W-химических сил при реакции. Первое и второе начало термодинамики позволяют вычислить химическое средство W только с точностью до некоторой неопределенной функции. Чтобы определить эту функцию нужны в дополнении к обоим началам термодинамики новые опытные данные о свойствах тел. Поэтому Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре.
нернст третье начало термодинамика
Определение
Третье начало термодинамики (теорема Нернста) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.
Формулировка
Третье начало термодинамики может быть сформулировано так:
«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».
или
где - любой термодинамический параметр.
Третье начало термодинамики относится только к равновесным состояниям.
Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):
,
третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.
Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной , что не мешает термодинамическим исследованиям, так как реально измеряется разность энтропий в различных состояниях. Согласно третьему началу термодинамики, при значение .
В 1911 году Макс Планк сформулировал третье начало термодинамики как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю: . Отсюда , что даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность состояния системы . При абсолютном нуле температуры система находится в основном квантово-механическом состоянии. Если оно не вырождено, то (состояние реализуется единственным микрораспределением) и энтропия при равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем могут стать существенными дискретность квантовых уровней макроскопической системы и влияние квантового вырождения.
Следствия
Недостижимость абсолютного нуля температур:
Из третьего начала термодинамики следует, что абсолютного нуля температуры нельзя достичь ни в каком конечном процессе, связанном с изменением энтропии, к нему можно лишь асимптотически приближаться, поэтому третье начало термодинамики иногда формулируют как принцип недостижимости абсолютного нуля температуры.
Поведение термодинамических коэффициентов:
Из третьего начала термодинамики вытекает ряд термодинамических следствий: при должны стремиться к нулю теплоёмкости при постоянном давлении и при постоянном объёме, коэффициенты теплового расширения и некоторые аналогичные величины. Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при ) связаны метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.
Заключение
Мы видели, что необратимость времени тесно связана с неустойчивостями в открытых системах. И.Р. Пригожин определяет два времени. Одно динамическое, позволяющее задать описание движения точки в классической механике или изменение волновой функции в квантовой механике. Другое время - новое внутреннее время, которое существует только для неустойчивых динамических систем. Оно характеризует состояние системы, связанное с энтропией.
Процессы биологического или общественного развития не имеют конечного состояния. Эти процессы неограниченны. Здесь, с одной стороны, как мы видели, нет какого-либо противоречия со вторым началом термодинамики, а с другой стороны - четко виден поступательный характер развития (прогресса) в открытой системе. Развитие связано, вообще говоря, с углублением неравновесности, а значит, в принципе с усовершенствованием структуры. Однако с усложнением структуры возрастает число и глубина неустойчивостей, вероятность бифуркации.
Изученные в последние годы простейшие нелинейные среды обладают сложными интересными свойствами. Структуры в таких средах могут развиваться независимо и быть локализованы, могут размножаться и взаимодействовать. Эти модели могут оказаться полезными при изучении широкого круга явлений.
Известно, что имеется некоторая разобщенность естественно научной и гуманитарной культур. Сближение, а в дальнейшем, возможно, гармоническое взаимообогащение этих культур может быть осуществлено на фундаменте нового диалога с природой на языке термодинамики открытых систем.
Список литературы
1. Базаров И.П. «Термодинамика». - М.: Высшая школа, 1991 г.
2. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. - М.: Мир, 1973 г.
3. Карери Д. Порядок и беспорядок в структуре материи. - М.: Мир, 1995 г.
4. Николис Г., Пригожин И. Познание сложного. - М.: Мир, 1990 г.
5. Пригожин И. Введение в термодинамику необратимых процессов. - М.: Иностранная литература , 1960 г.
6. Пригожин И. От существующего к возникающему. - М.: Наука, 1985 г.
7. Шелепин Л.А. В дали от равновесия. - М.: Знание, 1987 г.
9. Wikipedia.org Третье начало термодинамики
Размещено на Allbest.ru
Подобные документы
Первое начало термодинамики. Однозначность внутренней энергии как функции термодинамического состояния. Понятие энтропии. Второе начало термодинамики для равновесных систем. Третье начало термодинамики.
лекция [197,4 K], добавлен 26.06.2007Передача энергии от одного тела к другому. Внутренняя энергия и механическая работа. Первое начало термодинамики. Формулировки второго закона термодинамики. Определение энтропии. Теоремы Карно и круговые циклы. Процессы, происходящие во Вселенной.
реферат [136,5 K], добавлен 23.01.2012Направления термодинамических процессов. Состояние системы, детально охарактеризованное на уровне каждой частицы. Сущность эргодической гипотезы. Термодинамическое определении энтропии. Теорема Нернста или третье начало термодинамики. Тепловая машина.
презентация [1,7 M], добавлен 23.10.2013История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.
реферат [21,5 K], добавлен 26.02.2012Фазовое пространство и фазовая плотность вероятности. Первое начало термодинамики с точки зрения статистической физики. Статистическое определение энтропии. Статистическое обоснование третьего начала термодинамики. Теорема о равнораспределении.
контрольная работа [228,5 K], добавлен 06.02.2016Изучение истории формирования термодинамики как научной дисциплины на основе молекулярно-кинетической теории. Ознакомление с содержанием теоремы сохранения, превращения энергии (Гельмгольц, Майер, Джоуль) и законом возрастания энтропии (Клаузиус, Томсон).
контрольная работа [44,4 K], добавлен 03.05.2010Первый закон термодинамики. Изотермический, изобарический, изохорический и адиабатический процессы. Первое начало термодинамики. Электролиты. Причины диссоциации. Факторы, влияющие на степень диссоциации. Электропроводность стекла при нагревании.
реферат [1,1 M], добавлен 11.02.2009История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.
реферат [42,1 K], добавлен 25.02.2012Изучение поведения энтропии в процессах изменения агрегатного состояния. Анализ её изменения в обратимых и необратимых процессах. Свободная и связанная энергии. Исследование статистического смысла энтропии. Энергетическая потеря в изолированной системе.
презентация [1,6 M], добавлен 13.02.2016Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013