Жизнь с точки зрения физики
Знакомство с основными признаками живой материи. Жизнь как результат процесса игры при взаимодействии части системы со своим окружением. Анализ клеток, имеющих только один хромосомный набор. Особенности сходства между часовым механизмом и организмом.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 14.05.2014 |
Размер файла | 35,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Ранее господствовала концепция витализма, согласно которой биологические явления принципиально непостижимы на основе физики и химии, так как существует некая «жизненная сила», или энтелехия, или биологическое поле, не подлежащие физическому истолкованию. В 20 веке великий физик Бор рассматривал проблему взаимоотношения биологии и физики на основе концепции дополнительности, частным случаем которой является принцип неопределенности квантовой механики. Бор считал дополнительными исследования живых организмов на атомно-молекулярном уровне и как целостных систем. Эти два вида исследований несовместимы. В то же время «ни один результат биологического исследования не может быть однозначно описан иначе как на основе понятий физики и химии». Жизнь следует рассматривать «...как основной постулат биологии, не поддающийся дальнейшему анализу», подобно кванту действия в атомной физике.
Таким образом, имеется дополнительность биологии, с одной стороны, и физики и химии - с другой. Эта концепция не виталистична, она не ставит каких-либо границ применению физики и химии в исследованиях живой природы. В конце жизни (1961, 1962 гг.) Бор изменил свои взгляды под влиянием успехов молекулярной биологии. Он отметил, что дополнительность в биологии имеет не принципиальный, а практический характер, определяемый чрезвычайной сложностью живого тела. Практическая дополнительность преодолима. Развитие молекулярной биологии привело к атомистическому истолкованию основных явлений жизни - таких как наследственность и изменчивость. В последние десятилетия успешно развивается и физическая теория целостных биологических систем, основанная на идеях синергетики.
Приведем некоторые определения жизни
Советский биофизик Михаил Владимирович Волькенштейн (1912-1992) предложил следующую формулировку понятия жизнь, учитывающую свежие достижения естествознания, а главное доказывающую, что советская наука не стоит на месте: "Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот".
Другой советский биофизик Генрих Романович Иваницкий (1936 г.р.) выделил главные "признаки живой материи:
1) живые организмы характеризуются упорядоченной иерархической структурой;
2) живые организмы являются открытыми системами и получают энергию из окружающей среды, используя её для поддержания своей высокой упорядоченности;
3) способность реагировать на внешнее воздействие (рецепция) - универсальное свойство всех живых систем;
4) способность запоминать информацию о предыдущих состояниях и адаптироваться к изменению внешних условий;
5) живые организмы изменяются и усложняются;
6) всё живое размножается;
7) живое способно к саморегуляции и регенерации повреждений;
8) живые объекты осуществляют обмен веществ с окружающей средой с целью размножения и экспансии;
9) живые объекты обладают направленной подвижностью;
10) живым объектам свойственна неравновесность состояния".
Таким образом, развернутое определение жизни, основанное на перечислении признаков, которые характерны для живых систем, следующее: «Жизнь - это единая система (биосфера), для которой характерна память, способность к направленной подвижности, самовоспроизведению, обмену веществ, регулируемому потоку энергии и размножению».
Также выделяют краткое определение жизни с точки зрения физики: «Жизнь - это результат процесса игры при взаимодействии части системы со своим окружением. В игре у этой части системы появилось свойство запоминать вероятности появления удач и неудач в предыдущих раундах, что дало ей шанс на существование в последующих раундах".
Мы видим, что, все известные сочинители вариантов определения понятия «жизнь» прямо или косвенно вальсируют на тесненьком пятачке, центр которого обозначил Фридрих Энгельс ещё в конце XIX века. Столкновения идут главным образом из-за уточнения смысла отдельных слов или добавления свойств, учитывающих достижения вновь созданных научных направлений.
Австрийский физик Эрвин Шрёдингер в 1945 году попытался дать ответ на вопрос: "Как могут физика и химия объяснить те явления в пространстве и времени, которые имеют место внутри живого организма.
Рассмотрим его работу «Что такое жизнь с точки зрения физики?»
1. Атомы
Почему атомы так малы? А они ведь действительно очень малы. Каждый маленький кусочек вещества, к которому мы ежедневно прикасаемся, содержит их огромное количество. Предложено много примеров, чтобы довести этот факт до сознания широкой публики и самым выразительным из них был пример, приведенный лордом Кельвином. Представьте, что вы смогли пометить все молекулы в стакане воды, а после этого вылили содержимое стакана в океан и тщательно перемешали, чтобы меченые молекулы равномерно распределились по всем морям мира. Если вы затем зачерпнете стакан воды наугад, в любом месте океана, то обнаружите в нем около 100 помеченных вами молекул.
Действительные размеры атомов лежат приблизительно между 1/5000 и 1/2000 длины волны света. Это сравнение имеет особое значение, так как длина волны приблизительно соответствует величине самой маленькой частицы, которую еще можно различить под микроскопом.
Таким образом, мы видим, что такая частица содержит еще тысячи миллионов атомов.
Почему наше тело должно быть таким большим по сравнению с атомом?
Многие, страстно изучающие физику или химию, не раз жалели о том, что все наши органы чувств, составляющие более или менее существенную часть нашего тела и сами составленные из бесчисленного количества атомов, оказываются слишком грубыми, чтобы воспринимать удары отдельного атома. Мы не можем ни видеть, ни слышать, ни чувствовать отдельных атомов. Наши гипотезы об атомах далеко отстоят от непосредственного восприятия наших органов чувств, и эти гипотезы нельзя проверить прямым наблюдением.
Если бы дело обстояло не так, если бы человеческий организм был столь чувствителен, что несколько атомов или даже отдельный атом могли бы оказать заметное воздействие на наши органы чувств, -- на что тогда была бы похожа наша жизнь! Такой организм был бы наверняка неспособен развить упорядоченную мысль, которая, пройдя сквозь длинный ряд более ранних стадий, наконец, произвела бы среди многих других идей и самую идею об атоме.
Таким образом, возникают следующие вопросы. Почему наш мозг и связанная с ним система органов чувств должны обязательно состоять из такого необъятно большого количества атомов, чтобы физиологически изменчивые состояния мозга могли находиться в тесном и близком соответствии с весьма развитой мыслью? По каким причинам это соответствие несовместимо с таким тонким и чувствительным строением всего механизма, которое позволило бы при взаимодействии с окружающей средой регистрировать воздействие единичного атома извне и реагировать на него?
То, что мы называем мыслью, само по себе есть нечто упорядоченное и приложимо только к аналогичному материалу, то есть к познанию или опыту, которые тоже имеют определенную степень упорядоченности.
Отсюда вытекают два следствия:
1) физическая организация, чтобы быть в тесном соответствии с мыслью (как, например, мой мозг с моей мыслью), должна быть очень хорошо упорядоченной организацией, а это значит, что события, происходящие в мозгу, должны подчиняться строгим физическим законам, по крайней мере с очень большой степенью точности;
2) физические впечатления, произведенные на эту физическую, хорошо организованную систему телами извне, соответствуют познанию и опыту соответствующих мыслей, образуя их материал, как я назвал его.
Следовательно, физические взаимодействия между нашей системой и другими должны, как правило, сами обладать известной степенью физической упорядоченности, или, иначе говоря, они должны подчиняться строгим физическим законам с определенной степенью точности.
Возникает еще один вопрос: «Почему же все, изложенное выше, не может быть выполнено в случае, если организм состоит только из сравнительно небольшого количества атомов и чувствителен к воздействиям одного или немногих атомов?»
Потому что мы знаем: все атомы находятся в непрерывном хаотическом тепловом движении, которое, так сказать, противостоит их упорядоченному поведению и не позволяет отнести к какому бы то ни было распознаваемому закону события, происходящие между малым числом атомов. Только при наличии огромного количества атомов статистические законы начинают действовать и контролировать поведение этих assemblees с точностью, возрастающей с увеличением числа атомов, вовлеченных в процесс. Именно так события приобретают действительно закономерные черты. Все физические и химические законы, которые, как известно, играют важную роль в жизни организмов, являются статистическими.
Любой другой вид закономерности и упорядоченности, который можно себе представить, постоянно нарушается и становится недейственным вследствие непрерывного теплового движения атомов.
Приведем несколько примеров иллюстрирующих сказанное выше.
Пример 1.
Представьте себе сосуд, наполненный жидкостью, скажем водой, с небольшим количеством какого-нибудь красящего вещества, растворенного в ней, например перманганата калия, но не в равномерной концентрации, а так, где точки означают молекулы растворенного вещества и где концентрация уменьшается слева направо.
Если вы оставите эту систему в покое, то начнется весьма медленный процесс диффузии. Перманганат будет распространяться в направлении слева направо, то есть от места более высокой концентрации к месту более низкой концентрации, пока, наконец, не распределится равномерно по всему объему воды. В этом довольно простом и, очевидно, не особенно интересном процессе замечательно то, что он ни в какой степени не связан с какой-либо тенденцией или силой, которая, как это можно было бы подумать, влечет молекулы перманганата из области, где очень тесно, в область, где посвободней, подобно тому как, например, население страны переселяется в ту часть, где больше простора.
С нашими молекулами перманганата ничего подобного не происходит. Каждая из них ведет себя совершенно независимо от других молекул, с которыми она встречается весьма редко. Каждая из них как в области большей тесноты, так и в более свободной части испытывает одну и ту же судьбу. Ее непрерывно толкают молекулы воды, и, таким образом, она постепенно продвигается в совершенно непредсказуемом направлении: по прямой в сторону или более высокой или более низкой концентрации. Характер движений, которые она выполняет, часто сравнивают с движением человека, которому завязали глаза на большой площади и велели “пройтись”, но который не может придерживаться определенного направления, и таким образом, непрерывно изменяет линию своего движения.
Тот факт, что беспорядочное движение молекул перманганата все же должно вызывать регулярный ток в сторону меньшей концентрации и в конце концов привести к выравниванию концентраций, на первый взгляд кажется непонятным, но только на первый взгляд.
При тщательном рассмотрении тонких слоев почти постоянной концентрации можно представить себе, как молекулы перманганата, которые в данный момент содержатся в определенном слое, беспорядочно двигаясь, будут с равной вероятностью перемещаться и направо, и налево. Но именно вследствие этого поверхность раздела двух соседних слоев будет пересекаться большим количеством молекул, приходящих слева, а не в обратном направлении. Это произойдет просто потому, что слева больше беспорядочно движущихся молекул, чем справа, и до тех пор, пока это так, будет происходить регулярное перемещение слева направо, пока, наконец, не наступит равновесное распределение. Второй пример (пределы точности измерения). Легкое тело, подвешенное на длинной тонкой нити и находящееся в равновесии, часто используется физиками для измерения слабых сил, отклоняющих его от этого положения, то есть для измерения электрических, магнитных или гравитационных сил, прилагаемых так, чтобы повернуть его около вертикальной оси (для каждой конкретной цели, естественно, следует выбирать соответствующее легкое тело).
Продолжающиеся попытки повысить точность этого весьма часто используемого варианта “крутильных весов” столкнулись с любопытным пределом, который чрезвычайно интересен сам по себе. Выбирая все более и более легкие тела и более тонкую и длинную нить, чтобы сделать весы чувствительными ко все более слабым силам, достигают предела, когда подвешенное тело становится уже чувствительным к ударам теплового движения окружающих молекул и начинает исполнять непрерывный “танец” около своего равновесного положения -- танец, весьма сходный с дрожанием капли, описанным во втором примере. Это поведение не определяет еще абсолютного предела точности измерений на подобных весах, однако оно все-таки указывает практически на предел измерений.
Не поддающийся контролю эффект теплового движения конкурирует с действием той силы, которую следует измерить, и лишает значения единичное наблюдаемое отклонение. Вы должны проделать свои измерения много раз, чтобы нейтрализовать эффект броуновского движения вашего инструмента.
Этот пример является особенно наглядным, ибо наши органы чувств в конце концов представляют собой тоже своего рода инструмент. Мы можем видеть, какими бесполезными они были, если бы стали слишком чувствительными.
Пример 3
Пусть некоторый газ при определенных давлении и температуре имеет определенную плотность, тогда я могу это выразить, сказав, что внутри данного объема (который по размеру подходит для эксперимента) при данных условиях имеется n молекул газа. Если в какой-то момент времени вы захотите проверить мое утверждение, то найдете его неточным: отклонение будет порядка v/n. Следовательно, если n =100, то отклонение составит приблизительно 10. Таким образом, относительная погрешность измерения равна 10%. Но если п = 1000 000, то, вероятно, отклонение будет равным примерно 1000, и относительная погрешность 0,1%. Грубо говоря, этот статистический закон является весьма общим. Законы физики и физической химии неточны в пределах вероятной относительной погрешности, имеющей порядок v/n, где n -- количество молекул, участвующих в проявлении этого закона -- в его осуществлении внутри той области пространства или времени (или и пространства и времени), которая подлежит рассмотрению.
Таким образом, мы снова видим, что организм должен представлять собой относительно большую структуру, состоящую из множества атомов, чтобы наслаждаться благоденствием вполне точных законов как в своей внутренней жизни, так и при взаимодействии с внешним миром. Если бы количество участвующих частиц было слишком мало, то “закон” оказался бы слишком неточным. Особенно важным требованием является закон квадратного корня, потому что хотя 1000 000 и достаточно большое число, однако точность 1 на 1000 не является чрезмерно хорошей, если существо дела претендует на то, чтобы быть “Законом Природы”.
2. Механизм наследственности
Итак, мы пришли к заключению, что организм со всеми протекающими в нем биологическими процессами должен иметь весьма “многоатомную” структуру; необходимо также, чтобы случайные “одноатомные” явления не играли в нем слишком большой роли. Существенно, чтобы в основе организма лежали достаточно точные физические законы, на основе которых он мог бы организовать свою исключительно регулярную и хорошо упорядоченную работу. В какой степени приложимы к реальным биологическим фактам эти выводы, сделанные a priori, то есть с чисто физической точки зрения?
Маленькие группы атомов, слишком малые, чтобы проявлять точные статистические законы, играют главенствующую роль в весьма упорядоченных и закономерных процессах внутри каждого организма. Они управляют видимыми признаками большого масштаба, которые организм приобретает в течение своего развития; они определяют важные особенности его функционирования, и во всем этом проявляются весьма отчетливые и строгие биологические законы.
Под “планом в четырех измерениях” биологи подразумевают не только структуру и функционирование организма во взрослом состоянии или на любой другой стадии развития, но и организм в его онтогенетическом развитии от оплодотворенной яйцеклетки до стадии зрелости, когда он начинает размножаться. Теперь известно, что этот план в четырех измерениях определяется структурой всего одной клетки, а именно структурой оплодотворенного яйца. Более того, мы знаем, что он в основном определяется структурой только одной небольшой части этой клетки, ее ядром. Такое ядро в обычном “покоящемся” состоянии клетки представляется как сетка хроматина, распределенного в виде пузырька внутри клетки. Но во время жизненно важных процессов клеточного деления (митоза или мейоза) видно, что ядро состоит из набора частиц, обычно имеющих форму нитей или палочек и называемых хромосомами, количество которых равно 8, или 12, или, как, например, у человека, 48.
Хотя отдельные хромосомы иногда отчетливо различимы и индивидуализированы по форме и размеру, однако эти два набора хромосом почти подобны друг другу. Как мы увидим, один набор приходит от матери (яйцеклетка) и один -- от отца (оплодотворяющий сперматозоид). Именно эти хромосомы или, возможно, только осевая или скелетная нить того, что мы видим под микроскопом как хромосому, содержат в виде своего рода шифровального кода весь “план” будущего развития индивидуума и его функционирования в зрелом состоянии. Каждый полный набор хромосом содержит весь шифр, поэтому, как правило, имеются две копии последнего в оплодотворенной яйцеклетке, которая представляет самую раннюю стадию будущего индивидуума.
Рост организма осуществляется последовательными клеточными делениями. Такое клеточное деление, называемое митозом, не столь частое событие, как этого можно ожидать, учитывая огромное количество клеток, из которых состоит наш организм. Вначале рост идет быстро, яйцеклетка делится на две “дочерние”, которые затем дают поколение из четырех клеток, далее из 8, 16, 32, 64, ... и т. д. Частота деления не одинакова во всех частях растущего организма, и это нарушает регулярность этих чисел. Но путем простого вычисления можно установить, что в среднем достаточно 50 или 60 последовательных делений, чтобы образовалось то количество клеток, которое имеет взрослый человек, или, скажем, в десять раз больше, если принять во внимание смену клеток в течение жизни.
Очень скоро после начала развития особи одна группа клеток резервируется для образования позднее так называемых гамет, то есть спермиев или яйцеклеток (зависит от пола особи), необходимых для размножения индивидуума в зрелости.
“Резервируются” -- это значит, что они не служат другим целям и испытывают значительно меньше митотическпх делений. Происходящее в них необычное редукционное деление, называемое мейозом, является тем делением, которым завершается развитие гамет у зрелой особи. Это деление, как правило, происходит лишь незадолго до сингамии.
В мейозе двойной хромосомный набор родительской клетки просто делится на два единичных набора, каждый из которых идет в одну из двух дочерних клеток -- гамет. Другими словами, в мейозе не происходит митотического удвоения количества хромосом, количество их остается постоянным, и, таким образом, каждая гамета получает только половину, то есть только одну полную копию шифровального кода, а не две.
Клетки, имеющие только один хромосомный набор, называются гаплоидными. Таким образом, гаметы гаплоидны, а обычные клетки тела диплоидны. Иногда также встречаются индивидуумы с тремя, четырьмя или, вообще с многими хромосомными наборами во всех клетках, и они тогда называются триплоидами, тетраплоидами, полиплоидами.
Важным и действительно определяющим судьбу событием в процессе воспроизведения индивидуума является не оплодотворение, а мейоз. Один набор хромосом приходит от отца, один -- от матери. Никакая случайность не может помешать этому. Каждый человек получает ровно половину своей наследственности от матери и половину от отца.
Мы только что ввели термин ген для гипотетического материального носителя определенной наследственной особенности. Подчеркнем теперь два момента, которые будут иметь большое значение для нашего исследования. Первый -- размер или, лучше сказать, максимальный размер этого носителя; другими словами, до сколь малого размера мы можем проследить локализацию наследственных потенций. Второй момент -- устойчивость гена. Это предположение вытекает из постоянства “наследственного плана”.
Размер гена определен двумя совершенно независимыми способами. Один основан на генетических данных (эксперименты по скрещиванию), другой--на цитологических данных (прямое микроскопическое наблюдение). Первый способ принципиально достаточно прост. Установив расположение различных признаков (большого масштаба) внутри определенной хромосомы (скажем, у мушки Drosophila), мы, чтобы определить размер гена, должны только разделить длину этой хромосомы на количество признаков.
Другая оценка размера гена, хотя и основанная на микроскопическом наблюдении, в действительности является гораздо менее прямой. Определенные клетки Drosophila (именно клетки слюнных желез) иногда оказываются по каким-то причинам гигантски увеличенными; это касается и их хромосом. В них можно различить поперечные темные полоски, пересекающие нить. Дарлингтон подметил, что число этих полосок (2000 в рассматриваемом случае), хотя и заметно больше, но того же порядка, что и число генов, локализованных в той же хромосоме и определенных на основании экспериментов по скрещиванию. Он склонен рассматривать эти полоски как действительные гены (или границы между генами). Разделив длину хромосомы в нормального размера клетке на число полосок (2000), он определил объем гена равным кубу со стороной 300 А. Учитывая грубость расчетов, можно считать, что такой же размер имел ген, определенный первым методом.
Можно заметить, что 300 А -- это только около 100 или 150 атомных расстояний в жидкости или твердом теле, так что ген, несомненно, содержит не более миллиона или нескольких миллионов атомов. Согласно статистической физике, а это значит, согласно физике вообще, такое число слишком мало, чтобы обусловить упорядоченное и закономерное поведение. Оно было бы слишком мало, даже если бы все эти атомы были совершенно одинаковыми, как в газе или в капле жидкости, а ген, несомненно, не является гомогенной каплей жидкости. Он, вероятно, представляет собой большую белковую молекулу, где каждый атом, каждый радикал, каждое гетероциклическое кольцо играет индивидуальную роль, более или менее отличную от роли любых сходных атомов, радикалов или гетероциклических колец.
3. Мутации
Около 40 лет назад голландец де Фриз открыл, что в потомстве даже совершенно чистосортных линий появляется очень небольшое число особей -- скажем, два или три на десятки тысяч -- с небольшими, но скачкообразными изменениями. Выражение скачкообразные означает в этом случае не то, что изменения очень значительны, а только факт прерывистости, так как между неизмененными особями и немногими измененными нет промежуточных форм. Де Фриз назвал это мутацией. Здесь существенна именно прерывистость. Физику она напоминает квантовую теорию -- там тоже не наблюдается промежуточных ступеней между двумя соседними энергетическими уровнями атома. Физик был бы склонен мутационную теорию де Фриза фигурально назвать квантовой теорией биологии. Своим происхождением мутации действительно обязаны “квантовым скачкам” в генной молекуле. Но квантовой теории было только два года от роду, когда де Фриз впервые опубликовал свое открытие (в 1902 г.). Не удивительно, что потребовалась жизнь целого поколения, чтобы установить тесную связь между ними!
Мутации наследуются так же хорошо, как первоначальные неизмененные признаки. С одной стороны, мутация определенно является изменением в наследственном багаже и обусловливается каким-то изменением наследственной субстанции. С другой стороны, благодаря свойству действительно передаваться потомкам, мутации служат также подходящим материалом и для естественного отбора, который может работать над ними и производить виды, как это описано Дарвином, элиминируя неприспособленных и сохраняя наиболее приспособленных.
Определенная мутация вызывается изменением в определенной области одной из хромосом. Важно констатировать, что это изменение происходит только в одной хромосоме и оно возникает одновременно в соответствующем локусе гомологичной хромосомы.
У мутантной особи две “копии шифровального кода” не одинаковы; они представляют два различных “толкования”, или две “версии”, во всяком случае в том месте, где произошла мутация. Версия, которой следует особь, называется доминантной, а противоположная -- рецессивной; другими словами, мутация называется доминантной или рецессивной в зависимости от того, проявляет ли она свой эффект сразу или нет.
Рецессивные мутации более часты, чем доминантные, и бывают весьма важными, хотя они и не сразу обнаруживаются. Чтобы изменить свойства организма, они должны присутствовать в обеих хромосомах. Рецессивные мутации, пока они гетерозиготны, не служат, конечно, материалом для естественного отбора. Если мутации вредны, как это часто и бывает, они не отбрасываются, потому что скрыты.
Отсюда следует, что очень большое количество неблагоприятных мутаций может накапливаться и не причинять непосредственного вреда. Но они, конечно, передаются половине потомства, и это наблюдается как у человека, так и у животных, особенно домашних, хорошие физические качества которых имеют для нас большое значение. Никакой опасности вредных проявлений не возникнет до тех пор, пока такие индивидуумы не переженятся. Тогда, как показывает простой расчет, четвертая часть детей окажется гомозиготной и проявит вредную мутацию.
До сих пор мы обращали внимание на вредные мутации, которые, может быть, более многочисленны; однако следует отметить, что мы встречаемся и с полезными мутациями. Если самопроизвольная мутация представляет собой небольшую ступеньку в развитии вида, то создается впечатление, что это изменение “испытывается” вслепую, с риском, что оно может оказаться вредным и в этом случае будет автоматически элиминировано. Отсюда вытекает один очень важный вывод.
Чтобы быть подходящим материалом для работы естественного отбора, мутации должны быть достаточно редким событием, какими они в действительности и оказываются. Если бы мутации были настолько частыми, что существовала бы большая вероятность появлений у одной особи, скажем, дюжины различных мутаций, то вредные, как правило, преобладали бы над полезными, и виды, вместо того чтобы улучшаться путем отбора, оставались бы неулучшенными или погибали.
Частоту мутаций в потомстве -- так называемый темп мутирования -- можно увеличить во много раз по сравнению с естественным мутационным темпом, если подвергнуть родителей рентгеновскому или у-облучению. Мутации, вызванные таким путем, ничем (за исключением большей частоты) не отличаются от возникающих самопроизвольно, и создается впечатление, что каждая естественная мутация может быть также вызвана рентгеновскими лучами.
Таким образом, при помощи удивительно тонкого инструмента, каким являются рентгеновские лучи (они дали возможность, как помнит физик, 30 лет назад открыть структуру кристаллов), биологам и физикам удалось увидеть более тонкие структуры, ответственные за определенные индивидуальные признаки, то есть удалось определить размер генов более точно. Мы теперь серьезно стоим перед вопросом: как можно с точки зрения статистической физики примирить то, что генная структура, по-видимому, включает в себя только сравнительно малое число атомов (порядка 1000, а возможно, гораздо меньше) и все же проявляет весьма регулярную и закономерную активность и такое постоянство, какое граничит с чудом.
4. Квантовая теория
В данном случае ответ на этот вопрос дает квантовая теория. В свете современных знаний механизм наследственности тесно связан с самой основой квантовой теории и, даже более того, опирается на нее. Квантовая теория -- дискретные состояния -- квантовые переходы
Величайшее открытие квантовой теории -- обнаружение дискретности в книге природы, в контексте которой, с прежней точки зрения, казалось нелепостью все, кроме непрерывности. В первую очередь это касается энергии. Тело большого масштаба изменяет свою энергию непрерывно. Например, начавший качаться маятник постепенно замедляет свое движение вследствие сопротивления воздуха. Хотя это довольно странно, но приходится принять, что система атомного порядка ведет себя иначе. Мы должны признать, что малая система в силу своей собственной природы может находиться в состояниях, различающихся только дискретными количествами энергии, которые называются ее энергетическими уровнями. Переход от одного состояния к другому представляет собой несколько таинственное явление, обычно называемое квантовым переходом.
Но энергия -- не единственная характеристика системы. Возьмем снова наш маятник -- тяжелый шар, который подвешен на шнуре и который может выполнять различные движения. Его можно заставить качаться с севера на юг, с востока на запад, или в любом другом направлении, или по кругу, или по эллипсу. Но если тихонько дуть на шар с помощью мехов, то можно заставить его постепенно переходить от одного вида движения к другому.
Система атомов может находиться в нескольких дискретных состояниях. При состоянии с наиболее низким энергетическим уровнем ядра могут сблизиться настолько, что образуется молекула. Следует подчеркнуть, что молекула обязательно будет иметь определенную устойчивость. Конфигурация ее не может изменяться по крайней мере до тех пор, пока она извне не получит такую энергию, которая необходима для “подъема” молекулы на более высокий энергетический уровень.
Чтобы поднять молекулу на ближайший более высокий уровень, необходимо снабдить ее определенным количеством энергии. Проще всего это сделать, если “нагреть” молекулу. Вы помещаете ее в условия более высокой температуры (тепловую баню), позволяя таким образом другим системам (атомам, молекулам) ударяться о нее.
Одна и та же группа атомов при образовании молекул может объединиться более чем одним способом. Такие молекулы называются изомерными. Чем больше молекула, тем больше возможных изомеров.
Нет ли, кроме молекул, других устойчивых структур, состоящих из атомов? Разве например, золотая монета захороненная несколько тысячелетий назад, не сохраняет изображения, вычеканенного на ней? Монета состоит из огромного количества атомов, но, конечно, мы не склонны в данном случае приписывать простое сохранение формы статистике больших чисел.
Это важное замечание применимо и к искусно сформированным кристаллическим агрегатам, которые встречаются в виде включений в горных породах, где они сохраняются без изменений в течение нескольких геологических периодов.
Молекулы твердого тела и кристалла по сути ничем друг от друга не отличаются. Но в отношении истинной структуры материи границы должны быть проведены совершенно иным образом. Основное различие лежит между двумя строчками следующей схемы “уравнений”:
Молекула = твердое тело = кристалл;
Газ == жидкость == аморфное тело.
Мы должны кратко пояснить эти утверждения. Так называемые аморфные твердые тела оказываются либо не истинно аморфными, либо не истинно твердыми. В “аморфных” волокнах древесного угля с помощью рентгеновских лучей обнаружены рудиментарные структуры кристаллов графита. Таким образом, древесный уголь оказывается твердым телом, но в то же время и кристаллом. Если в каком-то теле мы не находим кристаллической структуры, мы должны рассматривать его как жидкость с очень высокой вязкостью (внутренним трением). По отсутствию у такого вещества определенной температуры плавления и скрытой теплоты плавления легко обнаружить, что оно не является истинно твердым телом. При нагревании оно постепенно размягчается и без резкого перехода превращается в жидкость.
Мы будем рассматривать молекулу как твердое тело -- кристалл. Основанием для этого служит то, что атомы, образующие молекулу, будет ли их много или мало, связаны силами точно такой же природы, как и многочисленные атомы, из которых построено истинно твердое тело -- кристалл.
Таким образом, молекула, имеющая правильное периодическое расположение составляющих ее частиц, является кристаллом.
Как такая крошечная частичка вещества -- ядро оплодотворенного яйца -- может вместить сложный шифровальный код, включающий в себя все будущее развитие организма? Хорошо упорядоченная ассоциация атомов, наделенная достаточной устойчивостью для длительного сохранения своей упорядоченности, представляется единственно мыслимой материальной структурой, в которой разнообразие возможных (“изомерных”) комбинаций достаточно велико, чтобы заключать в себе сложную систему детерминации в пределах минимального пространства.
5. Что такое жизнь?
Жизнь -- это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время.
Для физика (и только для него) Шредингер поясняет свою точку зрения такими словами: живой организм представляется макроскопической системой, частично приближающейся в своих проявлениях к чисто механическому (по контрасту с термодинамическим) поведению, к которому стремятся все системы, когда температура приближается к абсолютному нулю и молекулярная неупорядоченность снимается.
Что является характерной особенностью жизни? Когда мы считаем материю живой? Тогда, когда она продолжает “делать что-либо”, двигаться, участвовать в обмене веществ с окружающей средой и т. д., -- все это в течение более длительного отрезка времени, чем, по нашим ожиданиям, могла бы делать неодушевленная материя в подобных условиях. Если неживую систему изолировать или поместить в однородные условия, всякое движение обычно очень скоро прекращается в результате различного рода трения; разность электрических или химических потенциалов выравнивается, вещества, которые имеют тенденцию образовывать химические соединения, образуют их, температура выравнивается вследствие теплопроводности. Затем система в целом угасает, превращается в мертвую инертную массу материи. Достигается состояние, при котором не происходит никаких заметных событий. Физик называет это состояние термодинамическим равновесием, или состоянием максимальной энтропии. Практически такое состояние обычно достигается весьма быстро. Теоретически очень часто это состояние еще не истинное равновесие, еще не действительный максимум энтропии. Окончательное установление равновесия происходит очень медленно. Оно может потребовать нескольких часов, лет, столетий... Приведем пример, когда приближение к равновесию происходит все же достаточно быстро. Если стакан, наполненный чистой водой, и другой, наполненный подслащенной водой, поместить в герметически закрытый ящик при достоянной температуре, то сначала как будто ничего не происходит, возникает впечатление полного равновесия. Но через день становится заметным, как чистая вода вследствие более высокого давления ее паров постепенно испаряется и конденсируется на поверхности раствора сахара; последний переливается через край стакана. Только после того как чистая вода полностью испарится, сахар равномерно распределится по всему доступному ему объему.
Как же живой организм избегает перехода к равновесию? Ответ достаточно прост: благодаря тому, что он питается, дышит и (в случае растений) ассимилирует. Для всего этого есть специальный термин -- метаболизм
5.1 Сходство между часовым механизмом и организмом
живой материя клетка хромосомный
Все известное нам о структуре живой материи заставляет ожидать, что деятельность живого организма нельзя свести к проявлению обычных законов физики. И не потому, что имеется какая-нибудь “новая сила” или что-либо еще, управляющее поведением отдельных атомов внутри живого организма, а потому, что его структура отличается от всего изученного нами до сих пор в физической лаборатории.
Развертывание событий в жизненном цикле организма обнаруживает удивительную регулярность и упорядоченность, не имеющих себе равных среди всего, с чем мы встречаемся в неодушевленных предметах. Организм контролируется в высшей степени хорошо упорядоченной группой атомов, которая составляет только очень незначительную часть общей массы каждой клетки. Более того, на основании создавшейся у нас точки зрения на механизм мутаций мы приходим к заключению, что перемещение всего лишь немногих атомов внутри группы “управляющих атомов” зародышевой клетки достаточно для того, чтобы вызвать весьма определенное изменение наследственных признаков большого масштаба.
Удивительная способность организма концентрировать на себе “поток порядка”, избегая таким образом перехода к атомному хаосу, -- способность “пить упорядоченность” из подходящей среды, по-видимому, связана с присутствием “апериодических твердых тел” -- хромосомных молекул. Последние, без сомнения, представляют наивысшую степень упорядоченности среди известных нам ассоциаций атомов (более высокую, чем у обычных периодических кристаллов) из-за той индивидуальной роли каждого атома и каждого радикала, которую они здесь играют.
Упорядоченность, наблюдаемая в развертывании жизненных процессов, проистекает из различных источников. Оказывается, существуют два различных “механизма”, которые могут производить упорядоченные явления: статистический механизм, создающий “порядок из беспорядка” и новый механизм, производящий “порядок из порядка”.
Ключ к пониманию жизни заключается в том, что она имеет чисто механический характер и основана на принципе “часового механизма” в том смысле, который придает этому выражению Планк.
Давайте тщательно проанализируем движение реальных часов. Это не чисто механический феномен. Чисто механические часы не нуждались бы ни в пружине, ни в заводе. Раз пущенные в ход, они двигались бы бесконечно. Реальные часы без пружины останавливаются после нескольких движений маятника, его механическая энергия превращается в тепло. А это бесконечно сложный, атомистический процесс. Общее представление о нем, которое складывается у физика, вынуждает признать, что обратный процесс также вполне возможен: часы без пружины могут неожиданно начать двигаться вследствие затраты тепловой энергии своих собственных зубчатых колес и окружающей среды. В этом случае физик должен был бы сказать: часы испытывают исключительно интенсивный пароксизм броуновского движения.
Будем ли мы относить движение часов к динамическому или статистическому типу закономерных явлений (употребляя выражения Планка), зависит от нашей точки зрения. Называя это движение динамическим, мы обращаем внимание на его регулярность, которая может быть обеспечена сравнительно слабой пружиной, преодолевающей незначительные нарушения теплового движения, которыми мы можем пренебречь. Но если мы вспомним, что без пружины часы вследствие трения постепенно остановятся, то поймем, что этот процесс может быть истолкован только как статистическое явление.
Каким бы практически незначительным ни было трение и нагревание в часах, все же не может быть сомнения, что вторая точка зрения, которая не пренебрегает ими, более основательна, даже если мы имеем дело с регулярным движением часов, приводимых в движение пружиной
Тем не менее остается фактом, что “реальные часовые механизмы” ясно проявляют весьма выраженные черты “порядка из порядка”, то есть такие, которые взволновали бы физика, если бы он столкнулся с ними в организме. Кажется вероятным, что оба случая в конце концов имеют нечто общее. Остается рассмотреть, в чем заключается это общее и одновременно поразительное различие, которое делает организм в конечном счете беспрецедентным.
Принцип Нернста
Когда же физическая система -- любой вид ассоциации атомов -- следует “динамическому закону” (в том значении, которое придавал ему Планк) или обнаруживает “черты часового механизма”? На этот вопрос квантовая теория дает краткий ответ: при температуре абсолютного нуля. При приближении к этой температуре молекулярная неупорядоченность перестает влиять на физические явления.
Таким образом, мы можем выделить сходство между часовым механизмом и организмом. Оно просто и исключительно сводится к тому, что в основе последнего лежит твердое тело -- апериодический кристалл, образующий наследственное вещество, не подверженное воздействию беспорядочного теплового движения.
Вывод
Итак, обобщим все вышесказанное и сделаем выводы.
Мы увидели, что понятие жизнь охватывает множество явлений, имеющих очень различные степени сложности.
В своем нашумевшем труде "Что такое жизнь с точки зрения физика?" Эрвин Шредингер написал: «Жизнь - это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время».
По Э.Шредингеру: « живой организм представляется макроскопической системой, частично приближающейся в своих проявлениях к чисто механическому (по контрасту с термодинамическим) поведению, к которому стремятся все системы, когда температура приближается к абсолютному нулю и молекулярная неупорядоченность снимается.»
По его словам, организм есть апериодический кристалл, т.е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов. Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты).
Сегодня имеются все основания утверждать, что современная физика не встречается с границами своей применимости к рассмотрению биологических явлений. Трудно думать, что такие границы обнаружатся в будущем. Напротив, развитие биофизики как части современной физики свидетельствует о ее неограниченных возможностях. Приходится, конечно, вводить новые физические представления, но не новые принципы и законы.
Список использованных источников
живой материя клетка хромосомный
1. Шредингер Э. Что такое жизнь? С точки зрения физики.- М.: Атомиздат, 1972.- 88 с
2. Карпенков С.Х. Концепции современного естествознания. М.:, ЮНИТИ, 1997, 520с
3. Грушевицкая Т.Г., Садохин А.П. Концепции современного естествознания. М.: Высшая школа., 1998, 592с.
4. М.В.Волькенштейн «Биофизика», М., Наука, 1988.
Размещено на Allbest.ru
Подобные документы
Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.
реферат [52,2 K], добавлен 30.10.2007Рассмотрение истории развития и предметов исследования нанотехнологии, биофизики (физические аспекты существования живой природы), космической биологии, астробиологии (иные формы жизни в космосе) и геофизики (строение Земли с точки зрения физики).
реферат [258,4 K], добавлен 30.03.2010Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.
реферат [34,2 K], добавлен 26.04.2007Анализ всеобщего свойства движения веществ и материи. Способы определения квазиклассического магнитного момента электрона. Сущность, особенности и доказательство теории WAZA, ее вклад в развитие физики и естествознания. Парадоксы в теории П. Дирака.
доклад [137,8 K], добавлен 02.03.2010Особенности и направления негативного воздействия курения на человеческий организм, на его отдельные органы и системы. Физическое обоснование процессов, происходящих внутри и вокруг курильщика. Основные рекомендации курящим, снижающие риски для здоровья.
реферат [779,1 K], добавлен 22.12.2014Фазовое пространство и фазовая плотность вероятности. Первое начало термодинамики с точки зрения статистической физики. Статистическое определение энтропии. Статистическое обоснование третьего начала термодинамики. Теорема о равнораспределении.
контрольная работа [228,5 K], добавлен 06.02.2016Общая характеристика законов динамики, решение задач. Знакомство с основными видами сил. Особенности дифференциальных уравнений движения точки. Анализ способов решения системы трех дифференциальных уравнений второго порядка, рассмотрение этапов.
презентация [317,7 K], добавлен 28.09.2013Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.
лекция [339,3 K], добавлен 28.06.2013Основные представители физики. Основные физические законы и концепции. Концепции классического естествознания. Атомистическая концепция строения материи. Формирование механической картины мира. Влияние физики на медицину.
реферат [18,6 K], добавлен 27.05.2003Метод совпадений и антисовпадений как один из экспериментальных методов ядерной физики и физики элементарных частиц. Регистрация частиц и квантов с заданной между ними корреляцией в пространстве и во времени. Способы повышения временного разрешения.
контрольная работа [295,2 K], добавлен 15.01.2014