Тепловые конденсационные электрические станции
Описание и схематическое изображение принципа работы конденсационной электростанции. Проектирование котельной установки. Структура энергетического комплекса электростанции, ее воздействие на окружающую среду: на атмосферу, гидросферу и литосферу.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.04.2014 |
Размер файла | 223,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
УО «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра технологии важнейших отраслей промышленности
РЕФЕРАТ
по дисциплине: Основы энергосбережения
на тему: Тепловые конденсационные электрические станции
Студент
ФЭУТ, 2 курс, ДГХ-1
Н.А. Пунько
Проверил д.х.н.,
Профессор В.А. Тарасевич
МИНСК 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. Принцип работы
2. Основные системы
3. Влияние на окружающую среду
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Введение
На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60% выработки электроэнергии.
Конденсационная электростанция (КЭС) -- тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы. Исторически получила наименование «ГРЭС» -- государственная районная электростанция. С течением времени термин «ГРЭС» потерял свой первоначальный смысл («районная») и в современном понимании означает, как правило, конденсационную электростанцию (КЭС) большой мощности (тысячи МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями. Иногда встречается термин «гидрорециркуляционная электростанция», что соответствует аббревиатуре.
Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления -- блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается. Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:
- облегчается применение пара высоких и сверхвысоких параметров вследствие более простой системы паропроводов, что особенно важно для освоения агрегатов большой мощности;
- упрощается и становится более четкой технологическая схема электростанции, вследствие чего увеличивается надежность работы и облегчается эксплуатация;
- уменьшается, а в отдельных случаях может вообще отсутствовать резервное тепломеханическое оборудование;
- сокращается объем строительных и монтажных работ;
- уменьшаются капитальные затраты на сооружение электростанции;
- обеспечивается удобное расширение электростанции, причем новые энергоблоки при необходимости могут отличаться от предыдущих по своим параметрам.
Современные КЭС оснащаются в основном энергоблоками 200 -- 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.
Наиболее крупные КЭС в настоящее время имеют мощность до 4 млн. кВт. Сооружаются электростанции мощностью 4 -- 6,4 млн. кВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.
Глава 1. Принцип работы
Схема КЭС на угле: 1 -- градирня; 2 -- циркуляционный насос; 3 -- линия электропередачи; 4 -- повышающий трансформатор; 5 -- турбогенератор; 6 -- цилиндр низкого давления паровой турбины; 7 -- конденсатный насос; 8 -- поверхностный конденсатор; 9 -- цилиндр среднего давления паровой турбины; 10 -- стопорный клапан; 11 -- цилиндр высокого давления паровой турбины; 12 -- деаэратор; 13 -- регенеративный подогреватель; 14 -- транспортёр топливоподачи; 15 -- бункер угля; 16 -- мельница угля; 17 -- барабан котла; 18 -- система шлакоудаления; 19 -- пароперегреватель; 20 -- дутьевой вентилятор; 21 -- промежуточный пароперегреватель; 22 -- воздухозаборник; 23 -- экономайзер; 24 -- регенеративный воздухоподогреватель; 25 -- фильтр; 26 -- дымосос; 27 -- дымовая труба.
Вода, нагреваемая в паровом котле до состояния перегретого пара (520--565 градусов Цельсия), вращает паровую турбину, приводящую в движение турбогенератор.
Избыточное тепло выбрасывается в атмосферу (близлежащие водоёмы) через конденсационные установки в отличие от теплофикационных электростанций, отдающих избыточное тепло на нужды близлежащих объектов (например, отопление домов).
Глава 2. Основные системы
конденсационный электростанция котельная
КЭС является сложным энергетическим комплексом, состоящим из зданий, сооружений, энергетического и иного оборудования, трубопроводов, арматуры, контрольно-измерительных приборов и автоматики. Основными системами КЭС являются:
- котельная установка;
- установка
- топливное хозяйство;
- система золо- и шлакоудаления, очистки дымовых газов;
- электрическая часть;
- техническое водоснабжение (для отвода избыточного тепла);
система химической очистки и подготовки воды.
При проектировании и строительстве КЭС ее системы размещаются в зданиях и сооружениях комплекса, в первую очередь в главном корпусе. При эксплуатации КЭС персонал, управляющий системами, как правило, объединяется в цеха (котлотурбинный, электрический, топливоподачи, химводоподготовки, тепловой автоматики и т. п.).
Котельная установка располагается в котельном отделении главного корпуса. В южных районах России котельная установка может быть открытой, то есть не иметь стен и крыши. Установка состоит из паровых котлов (парогенераторов) и паропроводов. Пар от котлов передается турбинам по паропроводам «острого» пара. Паропроводы различных котлов, как правило, не соединяются поперечными связями. Такая схема называется «блочной».
Паротурбинная установка располагается в машинном зале и в деаэраторном (бункерно-деаэраторном) отделении главного корпуса. В нее входят:
- паровые турбины с электрическим генератором на одном валу;
- конденсатор, в котором пар, прошедший турбину, конденсируется с образованием воды (конденсата);
- конденсатные и питательные насосы, обеспечивающие возврат конденсата (питательной воды) к паровым котлам;
- рекуперативные подогреватели низкого и высокого давления (ПНД и ПВД) -- теплообменники, в которых питательная вода подогревается отборами пара от турбины;
- деаэратор (служащий также ПНД), в котором вода очищается от газообразных примесей;
- трубопроводы и вспомогательные системы.
Топливное хозяйство имеет различный состав в зависимости от основного топлива, на которое рассчитана КЭС. Для угольных КЭС в топливное хозяйство входят:
- размораживающее устройство (т. н. «тепляк», или «сарай») для оттаивания угля в открытых полувагонах;
- разгрузочное устройство (как правило, вагоноопрокидыватель);
- угольный склад, обслуживаемый краном-грейфером или специальной перегрузочной машиной;
- дробильная установка для предварительного измельчения угля;
- конвейеры для перемещения угля;
- системы аспирации, блокировки и другие вспомогательные системы;
- система пылеприготовления, включая шаровые, валковые, или молотковые углеразмольные мельницы.
Система пылеприготовления, а также бункера угля располагаются в бункерно-деаэраторном отделении главного корпуса, остальные устройства топливоподачи -- вне главного корпуса. Изредка устраивается центральный пылезавод. Угольный склад рассчитывается на 7-30 дней непрерывной работы КЭС. Часть устройств топливоподачи резервируется.
Топливное хозяйство КЭС на природном газе наиболее просто: в него входит газораспределительный пункт и газопроводы. Однако на таких электростанциях в качестве резервного или сезонного источника используется мазут, поэтому устраивается и мазутное хозяйство. Мазутное хозяйство сооружается и на угольных электростанциях, где мазут применяется для растопки котлов. В мазутное хозяйство входят:
- приемно-сливное устройство;
- мазутохранилище со стальными или железобетонными резервуарами;
- мазутная насосная станция с подогревателями и фильтрами мазута;
- трубопроводы с запорно-регулирующей арматурой;
- противопожарная и другие вспомогательные системы.
Система золошлакоудаления устраивается только на угольных электростанциях. И зола, и шлак -- негорючие остатки угля, но шлак образуется непосредственно в топке котла и удаляется через лётку (отверстие в шлаковой шахте), а зола уносится с дымовыми газами и улавливается уже на выходе из котла. Частицы золы имеют значительно меньшие размеры (порядка 0,1 мм), чем куски шлака (до 60 мм). Системы золошлакоудаления могут быть гидравлические, пневматические или механические. Наиболее распространённая система оборотного гидравлического золошлакоудаления состоит из смывных аппаратов, каналов, багерных насосов, пульпопроводов, золошлакоотвалов, насосных и водоводов осветлённой воды.
Выброс дымовых газов в атмосферу является наиболее опасным воздействием тепловой электростанции на окружающую природу. Для улавливания золы из дымовых газов после дутьевых вентиляторов устанавливают фильтры различных типов (циклоны, скрубберы, электрофильтры, рукавные тканевые фильтры), задерживающие 90--99 % твердых частиц. Однако для очистки дыма от вредных газов они непригодны. За рубежом, а в последнее время и на отечественных электростанциях (в том числе газо-мазутных), устанавливают системы десульфуризации газов известью или известняком (т. н. deSOx) и каталитического восстановления оксидов азота аммиаком (deNOx). Очищенный дымовой газ выбрасывается дымососом в дымовую трубу, высота которой определяется из условий рассеивания оставшихся вредных примесей в атмосфере.
Электрическая часть КЭС предназначена для производства электрической энергии и её распределения потребителям. В генераторах КЭС создается трехфазный электрический ток напряжением обычно 6--24 кВ. Так как с повышением напряжения потери энергии в сетях существенно уменьшаются, то сразу после генераторов устанавливаются трансформаторы, повышающие напряжение до 35, 110, 220, 500 и более кВ. Трансформаторы устанавливаются на открытом воздухе. Часть электрической энергии расходуется на собственные нужды электростанции. Подключение и отключение отходящих к подстанциям и потребителям линий электропередачи производится на открытых или закрытых распределительных устройствах (ОРУ, ЗРУ), оснащенных выключателями, способными соединять и разрывать электрическую цепь высокого напряжения без образования электрической дуги.
Система технического водоснабжения обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин. Системы разделяются на прямоточные, оборотные и смешанные. В прямоточных системах вода забирается насосами из естественного источника (обычно из реки) и после прохождения конденсатора сбрасывается обратно. При этом вода нагревается примерно на 8--12 °C, что в ряде случаев изменяет биологическое состояние водоёмов. В оборотных системах вода циркулирует под воздействием циркуляционных насосов и охлаждается воздухом. Охлаждение может производиться на поверхности водохранилищ-охладителей или в искусственных сооружениях: брызгальных бассейнах или градирнях.
В маловодных районах вместо системы технического водоснабжения применяются воздушно-конденсационные системы (сухие градирни), представляющие собой воздушный радиатор с естественной или искусственной тягой. Это решение обычно вынужденное, так как они дороже и менее эффективны с точки зрения охлаждения.
Система химводоподготовки обеспечивает химическую очистку и глубокое обессоливание воды, поступающей в паровые котлы и паровые турбины, во избежание отложений на внутренних поверхностях оборудования. Обычно фильтры, ёмкости и реагентное хозяйство водоподготовки размещается во вспомогательном корпусе КЭС. Кроме того, на тепловых электростанциях создаются многоступенчатые системы очистки сточных вод, загрязненных нефтепродуктами, маслами, водами обмывки и промывки оборудования, ливневыми и талыми стоками.
Глава 3. Влияние КЭС на окружающую среду
Современные КЭС весьма активно воздействуют на окружающую среду: на атмосферу, гидросферу и литосферу. На атмосферу влияние сказывается в большом потреблении кислорода воздуха для горения топлива и в выбросе значительного количества продуктов сгорания. Это в первую очередь газообразные окислы углерода, серы, азота, ряд которых имеет высокую химическую активность. Летучая зола, прошедшая через золоуловители, загрязняет воздух. Наименьшее загрязнение атмосферы (для станций одинаковой мощности) отмечается при сжигании газа и наибольшее - при сжигании твердого топлива с низкой теплотворной способностью и высокой зольностью. Необходимо учесть также большие уносы тепла в атмосферу, а также электромагнитные поля, создаваемые электрическими установками высокого и сверхвысокого напряжения
КЭС загрязняет гидросферу большими массами теплой воды, сбрасываемыми из конденсаторов турбин, а также промышленными стоками, хотя они проходят тщательную очистку.
Для литосферы влияние КЭС сказывается не только в том, что для работы станции извлекаются большие массы топлива, отчуждаются и застраиваются земельные угодья, но и в том, что требуется много места для захоронения больших масс золы и шлаков (при сжигании твердого топлива).
Влияние КЭС на окружающую среду чрезвычайно велико. Например, о масштабах теплового загрязнения воды и воздуха можно судить по тому, что около 60% тепла, которое получается в котле при сгорании всей массы топлива, теряется за пределами станции. Учитывая размеры производства электроэнергии на КЭС, объемы сжигаемого топлива, можно предположить, что они в состоянии влиять на климат больших районов страны. В то же время решается задача утилизации части тепловых выбросов путем отопления теплиц, создания подогревных прудовых рыбохозяйств. Золу и шлаки используют в производстве строительных материалов и т. д.
Заключение
Основные технико-экономические требования к КЭС - высокая надёжность, манёвренность и экономичность. Требование высокой надёжности и манёвренности обусловливается тем, что производимая КЭС электроэнергия потребляется сразу же, то есть КЭС должна производить столько электроэнергии, сколько необходимо её потребителям в данный момент.
Экономичность сооружения и эксплуатации КЭС определяется удельными капиталовложениями себестоимостью электроэнергии, обобщающим показателем - удельными расчётными затратами. Эти показатели зависят от мощности КЭС и её агрегатов, вида и стоимости топлива, режимов работы и кпд процесса преобразования энергии, а также местоположения электростанции. Затраты на топливо составляют обычно более половины стоимости производимой электроэнергии.
Поэтому к КЭС предъявляют, в частности, требования высокой тепловой экономичности, то есть малых удельных расходов тепла и топлива, высокого кпд.
СПИСОК ЛИТЕРАТУРЫ
1. Околович М.Н. Проектирование электрических станций. - М.: Энергоиздат, 1982. - 400с.
2. Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций: справочные материалы для курсового и дипломного проектирования. - М.: Энергия, 1978. - 456с.
3. Правила устройства электроустановок. - М.: Энергоатомиздат, 2002.
4. Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций. - М.: Энергия, 1980. - 600с.
5. Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций: справочные материалы для курсового и дипломного проектирования. - М.: Энергоатомиздат, 1989. - 648с.
6. Циркуляр № Ц-03-95(Э) О проверке кабелей на невозгорание при действии тока короткого замыкания в сетях собственных нужд электростанций - РАО «ЕЭС России»: 1995. - 6с.
7. Васильев А.А. Крючков И.П. Электрическая часть станций и подстанций. - М.: Энергоатомиздат, 1990. - 576c.
8. Неклепаев Б.Н. Электрическая часть электростанций и подстанций. - М.: Энергоатомиздат, 1986. - 576с.
9. Вольдек А.И. Электрические машины. - Л.: Энергия, - 840с.
Размещено на Allbest.ru
Подобные документы
Основные особенности принципа действия конденсационной электростанции, принцип работы. Характеристика Ириклинской ГРЭС, общие сведения. Анализ структурной схемы проектируемой электростанции. Этапы расчета технико-экономического обоснования проекта.
курсовая работа [1,7 M], добавлен 18.11.2012Принципиальная схема турбины К-150-130 для построения конденсационной электростанции. Расчёт параметров воды и пара в подогревателях, установки по подогреву воды, расхода пара на турбину. Расчёт регенеративной схемы и проектирование топливного хозяйства.
курсовая работа [384,4 K], добавлен 31.01.2013Электрическая станция. Тепловые установки. Тепловые конденсационные электростанции. Теплоэлектроцентраль и ее особенности. Преимущества тепловых станций по сравнению с другими типами станций. Особенности принципов работы, преимущества и недостатки.
реферат [250,8 K], добавлен 23.12.2008Расчёт основных технико-экономических показателей проектируемой конденсационной парогазовой электростанции. Срок окупаемости капитальных вложений. Расчет котла-утилизатора. Определение мощности и коэффициента полезного действия ПГУ. Безопасность объекта.
дипломная работа [1,6 M], добавлен 07.08.2012Атомные электростанции (АЭС)–тепловые электростанции, которые используют тепловую энергию ядерных реакций. Ядерные реакторы, используемые на атомных станциях России: РБМК, ВВЭР, БН. Принципы их работы. Перспективы развития атомной энергии в РФ.
анализ книги [406,8 K], добавлен 23.12.2007Разработка структурной схемы конденсационной электростанции. Выбор генераторов, трансформаторов блока и собственных нужд, автотрансформаторов связи и блока. Выбор схемы, расчет токов короткого замыкания. Выбор электрических аппаратов для генераторов.
курсовая работа [1,9 M], добавлен 11.12.2013Характеристика электрической части конденсационной электростанции, мощность которой 900 МВт. Анализ основного электрооборудования, выбор схемы электроснабжения. Особенности релейной защиты, выбор генераторов, расчет токов короткого замыкания и напряжения.
дипломная работа [1,9 M], добавлен 22.06.2012Проектирование схемы электрической станции типа ТЭЦ с одним высшим напряжением. Выбор структурной схемы проектируемой станции, нужного оборудования. Определение токов короткого замыкания. Разработка схемы электрических соединений электростанции.
курсовая работа [1,3 M], добавлен 22.07.2014Выбор главной схемы электрических соединений тепловой конденсационной электростанции. Расчет установленной мощности электрооборудования. Выбор трансформаторов. Определение токов короткого замыкания. Выбор напряжения, схема синхронных турбогенераторов.
курсовая работа [2,3 M], добавлен 19.12.2014Расчет основных технико-экономических показателей конденсационной электростанции. Описание тепловой схемы, выбор основного и вспомогательного оборудования. Требования к компоновке зданий и сооружений электростанции, разработка генерального плана.
курсовая работа [184,1 K], добавлен 26.02.2014