Определение коэффициента вязкости жидкости методом Стокса

Исследование внутреннего трения (вязкости) жидкостей и газов - сопротивления при перемещении одной их части относительно другой лабораторными методами. Описание экспериментальной установки. Определение коэффициента вязкости жидкости методом Стокса.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 20.04.2014
Размер файла 41,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЛАБОРАТОРНАЯ РАБОТА

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

Цель работы: экспериментальное определение коэффициента вязкости жидкости по методу Стокса.

вязкость лабораторная Стокс

Литература: 1. А.Н. Матвеев. Молекулярная физика. М., Высшая школа,1987, с.323-324, 342-343.

2.И.В. Савельев. Курс общей физики. т.1.М., Наука, 1989.

Приборы и оборудование:

1.Лабораторный стенд

2.Секундомер

3.Набор шариков, смоченных в глицерине.

4.Пинцет.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

Внутреннее трение (вязкость) - свойство жидкостей и газов оказывать сопротивление при перемещении одной их части относительно другой. Рассмотрим схему вязкого ламинарного (слоистого) течения слоя жидкости, заключенного между двумя параллельными пластинами (рис.1).

Пусть нижняя пластина неподвижна, а верхняя движется горизонтально вправо со скоростью . Тогда в жидкости возникает движение со скоростью .

Закон вязкого трения был установлен Ньютоном. Он имеет вид:

(1)

где - касательная сила, вызывающая сдвиг слоев жидкости друг относительно друга; - площадь слоя, по которому происходит сдвиг; - градиент скорости течения жидкости (быстрота изменения скорости от слоя к слою); коэффициент пропорциональности - коэффициент вязкости (внутреннего трения) жидкости. В СИ размерность = Пас.

В условиях установившегося ламинарного течения при постоянной температуре Т коэффициент вязкости жидкости- практически не зависит от градиента скорости.

Вязкость жидкости (в отличии от вязкости газов) обусловлена межмолекулярным взаимодействием, ограничивающим подвижность молекул между слоями, с одной стороны, и наличием вакантных мест, с другой. Два соприкасающихся слоя молекул жидкости, движущихся с различными скоростями, взаимодействуют между собой и изменяют скорость друг друга. С повышением температуры расстояние между слоями увеличивается, поэтому сила взаимодействия между ними уменьшается, что приводит к уменьшению вязкости жидкости. Кроме того, с увеличением температуры резко возрастает число вакансий, что так же приводит к уменьшение вязкости, поскольку слой относительно слоя перемещается не как единое целое, а благодаря постепенному переходу молекул от одной вакансии к другой. Молекулы жидкости (как и в газах) могут переходить из слоя в слой, но такой механизм вязкости в жидкостях не является определяющим.

Одним из методов экспериментального определения коэффициента вязкости жидкости является метод Стокса. При движении тела в жидкости на него действует сила сопротивления. Стокс вывел формулу, для силы сопротивления, действующей на шар, движущийся в жидкости поступательно с постоянной скоростью. Формула Стокса имеет вид:

(2)

Здесь - сила сопротивления; - коэффициент вязкости; - радиус шарика; - скорость поступательного движения шарика. Отметим, что формула Стокса справедлива лишь при условии, что при движении не возникает турбулентность (завихрение) жидкости. Движение прилегающих к шарику слоев должно быть ламинарным. Это условие выполняется при:

(3)

где - число Рейнольдса - один из так называемых критериев подобия; - плотность жидкости. Отметим, что критерии подобия дают возможность подбирать оптимальные условия эксперимента; они широко используются в гидродинамике, явлениях переноса, теории теплопередачи и др. Критерии подобия дают правила пересчета с модели на натуральную конструкцию для явлений, в которых необходимо учитывать большое число факторов.

ОПИСАНИЕ УСТАНОВКИ И ВЫВОД РАССЧЕТНЫХ ФОРМУЛ

Экспериментальная установка (рис.2) используемая для определения коэффициента вязкости жидкости по методу Стокса, представляет собой два стеклянных цилиндрических сосуда 1, наполненных жидкостью различной вязкости (в данной работе определяется вязкость только одной жидкости); уровень поверхности жидкости обозначен цифрой 2. На боковую поверхность сосудов надеты два тонких проволочных кольца 3 и 4. Расстояние между кольцами равно L.

Пинцетом аккуратно опускают в сосуд с глицерином маленький шарик по оси симметрии сосуда, плотность шарика больше плотности жидкости. Диаметр шарика предварительно измеряют с помощью специального микроскопа. Расстояние между поверхностью жидкости 2 и верхним указателем 3 подбирают так, чтобы на этом участке скорость шарика стабилизировалась; при этом на участке 3-4 движение шарика будет равномерным.

Рассмотрим силы, действующие на шарик, движущийся с постоянной скоростью в вязкой жидкости (рис.3): сила тяжести ( - объем шарика) направлена вниз, сила Архимеда и сила Стокса направлены вверх.

Условие постоянства скорости шарика дает (в проекции на вертикальную ось).

(4)

Подставляя в (4) выражения для сила также учитывая, что объем шара

,

где - диаметр шарика, получим выражение для коэффициента вязкости жидкости :

(5)

Установившаяся скорость движения шарика на участке 3-4 будет равна:

(6)

где - время движения шарика между кольцами 3 и 4. Из (5) и (6) получим формулу для определения коэффициента вязкости жидкости:

(7)

ВЫПОЛНЕНИЕ РАБОТЫ

Включить стенд (вилку - в розетку, тумблер - «Сеть»).

Включить тумблеры «Контроль» и «Подсветка»

Измерить диаметр шарика с помощью микроскопа. Измерения проводить не менее трех раз; при этом шарик надо поворачивать. Если его форма значительно отличается от сферической, такой шарик следует забраковать.

Аккуратно опустить пинцетом шарик в сосуд по оси симметрии.

Таблица 1

Номер

опыта

L,

м

Диаметр шарика,

дел

t,

c

,

Пас

,

Пас

1

d1

d2

d3

dср

2

3

Cр.

Секундомером измерить время прохождения шариком расстояния L между указателями 3 и 4. Следить, чтобы в моменты включения и выключения секундомера (в моменты прохождения шариком меток 3 и 4 соответственно) глаз наблюдателя располагался на уровне соответствующей метки.

Результаты всех измерений занести в таблицу 1, по формуле (7) определить коэффициент вязкости жидкости.

Пункты 3-6 повторить для 8-10 шариков, рассчитать погрешности измерений.

Выключить все тумблеры, выключить стенд.

Примечания: 1.При получении шариков у лаборанта постараться подобрать шарики одинаковых размеров не более 4 мм в диаметре.

2.Если время движения шарика < 2 с, то следует взять шарик меньшего размера, так как в противном случае будет большая погрешность.

3.Плотность глицерина - 1230 кг/м3, плотность шариков - 11300 кг/м3.

КОНТРОЛЬНЫЕ ВОПРОСЫ

Объясните возникновение силы вязкого трения в жидкости.

Запишите закон Ньютона для силы внутреннего трения в жидкости и выясните физический смысл коэффициента вязкости.

Изобразите на чертеже силы, действующие на шарик при его движении в вязкой жидкости с постоянной скоростью. Выведите расчетную формулу (7).

Охарактеризуйте метод Стокса определения коэффициента внутреннего трения жидкости.

Почему верхняя метка на стеклянном цилиндре расположена несколько ниже уровня жидкости в нем?

Можно ли брать полые шарики? Почему?

Объясните зависимость коэффициента вязкости жидкости от температуры.

Почему при < 2 с получается большая погрешность?

Размещено на Allbest.ru


Подобные документы

  • Сущность метода Стокса по определению коэффициента вязкости. Определение сил, действующих на шарик при его движении в жидкости. Оценка зависимости коэффициента внутреннего трения жидкостей от температуры. Изучение ламинарных и турбулентных течений.

    лабораторная работа [1001,4 K], добавлен 15.10.2010

  • Вязкость - свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одного слоя вещества относительно другого. Определение коэффициента вязкости жидкости методом Стокса. Законы и соотношения, использованные при расчете формулы.

    лабораторная работа [531,3 K], добавлен 02.03.2013

  • Экспериментальная проверка формулы Стокса и условий ее применимости. Измерение динамического коэффициента вязкости жидкости; число Рейнольдса. Определение сопротивления жидкости, текущей под действием внешних сил, и сопротивления движущемуся в ней телу.

    лабораторная работа [339,1 K], добавлен 29.11.2014

  • Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.

    лабораторная работа [61,1 K], добавлен 19.07.2007

  • Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.

    лабораторная работа [780,2 K], добавлен 30.01.2011

  • Расчет кинематического коэффициента вязкости масла при разной температуре. Применение формулы Убеллоде для перехода от условий вязкости к кинематическому коэффициенту вязкости. Единицы измерения динамического и кинематического коэффициентов вязкости.

    лабораторная работа [404,7 K], добавлен 02.02.2022

  • Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.

    презентация [571,8 K], добавлен 06.04.2015

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Сущность ньютоновской жидкости, ее относительная, удельная, приведённая и характеристическая вязкость. Движение жидкости по трубам. Уравнение, описывающее силы вязкости. Способность реальных жидкостей оказывать сопротивление собственному течению.

    презентация [445,9 K], добавлен 25.11.2013

  • Изучение особенностей капиллярного, вибрационного, ротационного и ультразвукового метода вискозиметрии. Метод падающего шарика вискозиметрии. Классификация вискозиметров. Вискозиметр Брукфильда - высокоточный прибор для поточного измерения вязкости сред.

    презентация [992,7 K], добавлен 20.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.