Темная материя
Гипотеза существования в Галактике невидимой материи, которая создает гравитационные силы и влияет на распределение скоростей звездных систем. Сущность барионной и небарионной темной материи, масса которой больше видимой массы звёзд и газопылевых облаков.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 15.04.2014 |
Размер файла | 242,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Государственный университет учебно-научно-производственный комплекс
Реферат на тему:
"Тёмная материя"
Выполнили студенты группы 11-ИТ:
Булатникова А.А.
Виноградова Е.В.
Проверил: Шадрин И.Ф.
Орел 2014 г.
Содержание
Введение
1. Что будет с нашим миром?
2. Свидетельства существования тёмной материи
3. Барионная тёмная материя
4. Небарионная тёмная материя
5. Тёмная энергия
Введение
Из анализа многих экспериментальных данных следует: Вселенная скрывает от наших глаз почти всю свою массу, оставляя видимой для приборов наблюдателей лишь около одной сотой доли вещества, участвующего в ее движении.
Вообще, современные представления о теории гравитации не позволяют объяснить наблюдаемую структуру нашей Галактики и, в частности, распределение скоростей звездных систем. Чтобы согласовать теорию и эксперимент необходимо предположить, что вокруг Галактики существует дополнительная невидимая материя, которая и создает недостающие гравитационные силы. Темная материя сродни обычному веществу в том смысле, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.
Примечательно, что количество такой темная материи должно быть огромно - во много раз больше, чем обычной видимой материи. Есть разные гипотезы, о ее возможной природе: - от остывших старых звезд, которые уже не излучают свет и поэтому не видны, и космической пыли, до потоков нейтрино или иных неизвестных пока элементарных частиц. Есть в этом направлении и совсем мистические идеи, согласно которым большая часть скрытой массы и вовсе приходится даже не на материю, а на некую темную энергию.
Из чего состоит невидимая или, как ее стали называть, Темная Материя нашей Вселенной? Что такое барионная и небарионная темная материя? Что будет с нашим миром? Существует ли она на самом деле? Попытаемся осветить некоторые из перечисленных вопросов, хотя большинство ответов еще предстоит найти.
1. Что будет с нашим миром?
После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удалённых галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведёт - зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять "схлопнется" в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объём.
Расчётное значение критической средней плотности Вселенной примерно 10-29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идёт именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 1030 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объёма Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усреднённое по всему объёму Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звёзд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.
Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть - это такое состояние системы, когда вещество в ней распределено равномерно и разные её части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, ещё очень-очень долго об этой мрачной перспективе можно не задумываться.
Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключённой в звёздах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.
2. Свидетельства существования тёмной материи
Первое указание на то, что с подсчётом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остаётся по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.
О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.
Рис. 1 Рассчитанная и измеренная скорость вращения звёзд в зависимости от расстояния до центра галактики (изображение с сайтаwww.astronomy.ohio-state.edu)
Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к её периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остаётся почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остаётся почти неизменной. Поскольку плотность видимого вещества (содержащегося в звёздах и межзвёздном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чегомы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого "чего-то" было примерно в 10 раз больше, чем обычного видимого вещества. Это "нечто" получило название "тёмная материя" (по-английски "dark matter")и до сих пор остаётся самой интригующей загадкой в астрофизике.
Ещё одно важное свидетельство присутствия тёмной материи в нашем мире приходит из расчётов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчёты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлёта. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время её считали серьёзным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой тёмной материи, то в расчётах всё становится на свои места и концы начинают сходиться с концами - формирование галактик из звёзд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц тёмной материи и только потом, за счёт сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, - только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звёзды, галактики да и мы с вами - всего лишь ширма для громадного "нечто", о котором мы не имеем ни малейшего представления.
Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключённого в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нём действует геометрия Эвклида, а не Лобачевского (что надёжно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть тёмная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое ещё предстоит понять и осмыслить.
Что же мы знаем сегодня о тёмной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что тёмная материя существует - об этом неопровержимо свидетельствуют факты, приведённые выше. А ещё нам доподлинно известно, что тёмная материя существует в нескольких формах.
После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO(Канада) было установлено, что у нейтрино масса есть, стало ясно, чтоот 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино - пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей - тёмной материи и тёмной энергии. Незначительную долю тёмной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная тёмнаяматерия). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о её трёх последних графах - ниже.
3. Барионная тёмная материя
Рис. 2 Фотофакт
Скопление галактик (в левой нижней части участка, обведённого кружком) создаёт гравитационную линзу. Она искажает форму расположенных за линзой объектов - вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учёными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удаётся разглядеть в телескоп.
Охота на тёмные массивные объекты - дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп "Хаббл" заметил, что одна из звёздочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-тоедва светящийся объект. Это и былхолодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчёты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.
Небольшая (4-5%) часть тёмной материи - это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтверждённым. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удалённых галактик в течение нескольких лет. Когда тёмное массивное тело проходит между наблюдателем и далёкой галактикой, её яркость на короткое время уменьшается (или увеличивается, поскольку тёмное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звёзды (коричневые карлики), либо планетоподобные объекты, не связанные со звёздами и путешествующие по галактике сами по себе. Ещё один представитель барионной тёмной материи - недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.
4. Небарионная тёмная материя
галактика материя гравитационный барионный
В качестве главных кандидатов на небарионную тёмную материю выступают так называемые WIMP(сокращение от английского Weakly Interactive Massive Particles - слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая тёмная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.
Одна из идей состоит в том, что если такие частицы существуют, то Земля в своём движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность про взаимодействовать с обычным атомом у неё всё же есть. При этом в специальных установках - очень сложных и дорогостоящих - может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счёта сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остаётся открытым.
Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики)должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал,Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.
Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна
Е = mс2,
энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув её с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.
5. Тёмная энергия
В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввёл в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой "лямбда" - Л. Эта Л была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Л своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причём её зависимость от времени можно объяснить, подбирая величину той самой "ошибочной" эйнштейновской постоянной Л, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть "тёмная энергия".
О тёмной энергии можно сказать ещё меньше, чем о тёмной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм тёмной материи. В галактиках и скоплениях галактик её столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, тёмная энергия испытывает антигравитацию: за счёт её присутствия темп расширения Вселенной растёт. Тёмная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А ещё тёмная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.
Главный кандидат на роль тёмной энергии - вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Ещё один кандидат - гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы тёмной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесёт человечеству радикально новые знания, поскольку в любом случае тёмная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.
Итак, наш мир на 95% состоит из чего-то, о чём мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привёл к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.
Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка тёмной материи. И это наверняка принесёт совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели "Химии и жизни" смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.
Размещено на Allbest.ru
Подобные документы
Свидетельства существования темной материи, кандидаты на роль ее частиц. Нейтрино, слабовзаимодействующие массивные частицы (вимпы). Магнитные монополи, зеркальные частицы. Прямая регистрация вимпов. Регистрация сильновзаимодействующей темной материи.
курсовая работа [3,3 M], добавлен 27.08.2012Материя как параметрический резонанс в меняющейся плотности эфира. Каждому времени соответствует своя частота вращения спинов частиц и электронных облаков. От скорости течения времени зависят гравитационная постоянная, масса частиц. Время во вселенной.
реферат [414,0 K], добавлен 24.09.2008Непрерывность материи как исходный принцип миропонимания, его место в теории дифференциального исчисления. Этапы развития кинетической теории газов. История изучения атома, истоки противоречий сплошности и атомности. Темпы и развития современных идей.
реферат [16,1 K], добавлен 20.09.2009Поляризация вакуума как единственный механизм образования материи и информации и их пространственно-временных многообразий. Дифференциальный оператор и его место среди поляризационных векторных. Поляризация пространственно-временных состояний.
контрольная работа [529,7 K], добавлен 23.11.2009Особенности протекания экзотермических и экзоэргических процессов. Понятие материи как сущности мира и того общего, что входит в состав всех объектов природы. Исследование двойственной корпускулярно-волновой сущности микрочастиц. Теория "кипения" вакуума.
контрольная работа [24,8 K], добавлен 08.09.2009Атомная структура материи. Роль и значение открытия Р. Броуна. А. Эйншнейн и первая теория броуновского движения. Происхождение законов вероятности в физике. Определение размеров белковой молекулы Т. Сведбергом. Современная наука и броуновское движение.
реферат [36,6 K], добавлен 23.09.2014Первоначальное событие бытия. Элементарный объем и масса. Потенциальная и кинетическая составляющие массы. Статическая часть массы. Взаимосвязь массы и вещества. Мерность массы, энергия и поле. Гравитационное поле как кинетическая масса симметричных масс.
научная работа [4,7 M], добавлен 27.02.2010Вопрос о среде. Масса. Строение вещества. Химические связи. Некоторые следствия. Электропроводность. Захват, излучение фотона. Эффект антигравитации. Красное смещение, постоянная Хаббла. Нейтронные звёзды, чёрные дыры. Тёмная материя. Время, Вселенная.
статья [368,0 K], добавлен 21.09.2008Магнитные поля и химический состав звёзд (гелиевых, Si- и Am–звёзд, SrCrEu-звёзд). Магнитные поля звёзд-гигантов, "белых карликов" и нейтронных звёзд. Положения теории реликтового происхождения поля и теории динамо-механизма генерации магнитного поля.
курсовая работа [465,3 K], добавлен 05.04.2016Пространство - единственная объективно существующая не материальная субстанция. Материальные субстанции - вещество, энергия, эфир. Время - последовательность изменения расположения материи. Магнетизм и электричество. Строение звезды. Черная дыра.
статья [18,0 K], добавлен 07.03.2008