Теплообменные аппараты

Теплоэлектроцентраль (ТЭЦ) как разновидность тепловой электростанции, принцип работы и схема. Теплообменные аппараты, их типы и принципы действия: рекуперативные, регенеративные, смешивающие и с внутренним тепловыделением. Уравнения гидродинамики.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.03.2014
Размер файла 306,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

  • 1. Описание ТЭЦ. Принцип работы, схема
  • 2. Теплообменные аппараты, типы
  • 3. Уравнения гидродинамики
  • Список литературы
  • 1. Описание ТЭЦ. Принцип работы, схема
  • Теплоэлектроцентраль (ТЭЦ) -- разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов) [1].
  • Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (в СССР -- ГРЭС) и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.
  • ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Главное отличие ТЭЦ от КЭС состоит в возможности отобрать часть тепловой энергии пара, после того, как он выработает электрическую энергию. В зависимости от вида паровой турбины, существуют различные отборы пара, которые позволяют забирать из нее пар с разными параметрами. Турбины ТЭЦ позволяют регулировать количество отбираемого пара. Отобранный пар конденсируется в сетевых подогревателях и передает свою энергию сетевой воде, которая направляется на пиковые водогрейные котельные и тепловые пункты. На ТЭЦ есть возможность перекрывать тепловые отборы пара, в этом случае ТЭЦ становится обычной КЭС. Это дает возможность работать ТЭЦ по двум графикам нагрузки:
  • - тепловому -- электрическая нагрузка сильно зависит от тепловой нагрузки (тепловая нагрузка -- приоритет);
  • - электрическому -- электрическая нагрузка не зависит от тепловой, либо тепловая нагрузка вовсе отсутствует, например, в летний период (приоритет -- электрическая нагрузка).
  • Совмещение функций генерации тепла и электроэнергии (когенерация) выгодно, так как оставшееся тепло, которое не участвует в работе на КЭС, используется в отоплении. Это повышает расчетный КПД в целом (80 % у ТЭЦ и 30 % у КЭС), но не говорит об экономичности ТЭЦ. Основными же показателями экономичности являются: удельная выработка электроэнергии на тепловом потреблении и КПД цикла КЭС.
  • При строительстве ТЭЦ необходимо учитывать близость потребителей тепла в виде горячей воды и пара, так как передача тепла на большие расстояния экономически нецелесообразна [6].
  • Рис.1.1. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара а -- турбина с противодавлением и отбором пара, отпуск тепла -- по открытой схеме; б -- конденсационная турбина с отбором пара, отпуск тепла -- по открытой и закрытой схемам; ПК -- паровой котёл; ПП -- пароперегреватель; ПТ -- паровая турбина; Г -- электрический генератор; К -- конденсатор; П -- регулируемый производственный отбор пара на технологические нужды промышленности; Т -- регулируемый теплофикационный отбор на отопление; ТП -- тепловой потребитель; ОТ -- отопительная нагрузка; КН и ПН -- конденсатный и питательный насосы; ПВД и ПНД -- подогреватели высокого и низкого давления; Д -- деаэратор; ПБ -- бак питательной воды; СП -- сетевой подогреватель; СН -- сетевой насос
  • По типу соединения котлов и турбин теплоэлектроцентрали могут быть блочные и неблочные (с поперечными связями). На блочных ТЭЦ котлы и турбины соединены попарно (иногда применяется дубль-блочная схема: два котла на одну турбину). Такие блоки имеют, как правило, большую электрическую мощность: 100--300 МВт.
  • Схема с поперечными связями позволяет перебросить пар от любого котла на любую турбину, что повышает гибкость управления станцией. Однако для этого необходимо установить крупные паропроводы вдоль главного корпуса станции. Кроме того, все котлы и все турбины, объединенные в схему, должны иметь одинаковые номинальные параметры пара (давление, температуру). Если в разные годы на ТЭЦ устанавливалось основное оборудование разных параметров, должно быть несколько схем с поперечными связями. Для принудительного изменения параметров пара может быть использовано редукционно-охладительное устройство (РОУ).
  • По типу паропроизводящих установок могут быть ТЭЦ с паровыми котлами, с парогазовыми установками, с ядерными реакторами (атомная ТЭЦ). Могут быть ТЭЦ без паропроизводящих установок -- с газотурбинными установками. Поскольку ТЭЦ часто строятся, расширяются и реконструируются в течение десятков лет (что связано с постепенным ростом тепловых нагрузок), то на многих станциях имеются установки разных типов. Паровые котлы ТЭЦ различаются также по типу топлива: уголь, мазут, газ.
  • По типу выдачи тепловой мощности различают турбины с регулируемыми теплофикационными отборами пара (в обозначении турбин, выпускаемых в России, присутствует буква «Т», например, Т-110/120-130), с регулируемыми производственными отборами пара («П»), с противодавлением («Р»). Обычно имеется 1-2 регулируемых отбора каждого вида; при этом количество нерегулируемых отборов, используемых для регенерации тепла внутри тепловой схемы турбины, может быть любым (как правило, не более 9, как для турбины Т-250/300-240). Давление в производственных отборах (номинальное значение примерно 1-2 МПа) обычно выше, чем в теплофикационных (примерно 0,05-0,3 МПа). Термин «Противодавление» означает, что турбина не имеет конденсатора, а весь отработанный пар уходит на производсвенные нужды обслуживаемых предприятий. Такая турбина не может работать, если нет потребителя пара противодавления. В похожем режиме могут работать теплофикационные турбины (типа "Т") при полной тепловой нагрузке: в таком случае весь пар уходит в отопительный отбор, однако давление в конденсаторе поддерживается немногим более номинального (обычно не более 12-17 кПа). Для некоторых турбин возможна работа на "ухудшенном вакууме" - до 20 кПа и более.
  • Кроме того, выпускаются паровые турбины со смешанным типом отборов: с регулируемыми теплофикационными и производственными отборами («ПТ»), с регулируемыми отборами и противодавлением («ПР») и др. На ТЭЦ могут одновременно работать турбины различных типов в зависимости от требуемого сочетания тепловых нагрузок [2].

2. Теплообменные аппараты, типы

Устройство, в котором происходит процесс нагревания или охлаждения, т. е. осуществляется переход теплоты от одного теплоносителя к другому, называют теплообменным аппаратом [8].

Теплообменные аппараты могут иметь самые разнообразные назначения - паровые котлы, конденсаторы, пароперегреватели, приборы центрального отопления и т. д. Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря на большое разнообразие теплообменных аппаратов, основные положения теплового расчета для них остаются общими. В теплообменных аппаратах движение жидкости осуществляется по трем основным схемам. Если направление движения горячего и холодного теплоносителей совпадают, то такое движение называется прямотоком (рис.4,а) Если направление движения горячего теплоносителя противоположно движению холодного теплоносителя, то такое движение называется противотоком (рис.4,б). Если же горячий теплоноситель движется перпендикулярно движению холодного теплоносителя, то такое движение называется перекрестным током (рис.4,в). Кроме этих основных схем движения жидкостей, в теплообменных аппаратах применяют более сложные схемы движения, включающие все три основные схемы [4].

По принципу действия теплообменные аппараты разделяют на рекуперативные, регенеративные, смешивающего типа и с внутренним тепловыделением.

В рекуперативных аппаратах (подогревателях) передача теплоты от греющего (горячего) к нагреваемому (холодному) теплоносителю происходит непрерывно через разделяющую их стенку. примером такого аппарата может служить водоводяной подогреватель (рис. 2.1), в котором нагреваемая вода движется внутри трубок 6, закрепленных в трубных досках 3, а в пространство между трубками, ограниченное кожухом 4, поступает горячая вода. она передает через стенки труб теплоту холодной воде.

Рис. 2.1. Водоводяной подогреватель: 1 - патрубок входа нагреваемой воды; 2 - крышка; 3 - трубная доска; 4 - кожух; 5 - перегородки; 6 - трубки; 7 - патрубок входа греющей воды

теплоэлектроцентраль теплообменный гидродинамика рекуперативный

В регенеративных аппаратах (рис. 2.2) одна и та же поверхность омывается попеременно, то греющим, то нагреваемым теплоносителем (например, в насадках доменной печи). так как в рекуперативных и регенеративных подогревателях процесс передачи теплоты всегда связан с поверхностью нагрева, то эти аппараты называют также поверхностными.

Рис. 2.2. Регенеративный теплообменник

Процесс теплоотдачи в аппаратах смешивающего типа (рис. 2.3) происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. эти аппараты применяют, например, для охлаждения или нагревания воды в потоке воздуха или газа. к ним относятся башенные охладители (градирни), деаэраторы, скрубберы и др.

Рис. 2.3. Теплообменный аппарат смесительного типа

В теплообменных аппаратах с внутренним тепловыделением не два, как обычно, а один теплоноситель, при этом теплота выделяется в самом аппарате. по этому принципу работают электронагреватели, ядерные реакторы и другие установки, действие которых связано с выделением теплоты [9].

3. Уравнения гидродинамики

Основные уравнения гидродинамики выражают закон сохранения массы и закон сохранения энергии для движущейся жидкости [3].

Основное уравнение гидродинамики известно под названием уравнения неразрывности. Вторым основным уравнением гидродинамики является уравнение Бернулли, устанавливающее зависимость между скоростью и давлением в различных сечениях одной и той же струйки.

Силы, приложенные к любому выделенному объему жидкости, ограниченному замкнутой поверхностью, подразделяют на две группы - массовые (объемные) и поверхностные [10].

При установившемся течении жидкости или газа изменения массы в рассматриваемом объеме не происходит, что означает равенство объемов втекающей и вытекающей жидкости.

Изучение потока жидкости в трубопроводе показало, что ее частицы, расположенные вблизи оси, движутся с большими скоростями, чем частицы, находящиеся у стенок. При рассмотрении гидродинамических явлений выделяют элементарную струйку, размеры поперечного сечения которой бесконечно малы, а значит, скорость ее течения можно принять постоянной. Для определения понятия элементарной струйки дополнительно вводят понятия линии и трубки тока.

Под линией тока в потоке понимают линию, касательные к которой в каждой точке совпадают с направлением вектора скорости. Для установившегося движения линия тока всегда совпадает с траекторией частиц движущейся жидкости, расположенных на ней. При неустановившемся движении частицы жидкости на линии тока находятся одно мгновение.

Трубкой тока называют трубчатую поверхность замкнутого бесконечно малого контура, образующими которого являются линии тока. Жидкость, заполняющая трубку тока, образует элементарную струйку (рис. 3.1).

Рис. 3.1. Элементарная струйка

перпендикулярное ее образующим, называют живым. В установившемся потоке форма элементарных струек постоянна, а в неустановившемся - непрерывно изменяется. При изучении элементарной струйки уравнения Эйлера записывают в так называемой естественной форме. Координатными осями в этом случае будут касательная, главная нормаль и бинормаль к линии тока, причем проекции действующих сил на бинормаль равны нулю. Обозначая направление касательной к линии тока через / (см. рис. 7.2, б), а главной нормали через г и составляя суммы проекций действующих сил, получаем:

(3.1)

где г - радиус кривизны линии тока.

из условия неразрывности струйки будет иметь вид:

(3.2)

(3.3)

Изменение массы может произойти только в результате изменения плотности р и объема элементарной струйки. Секундное приращение массы можно определить по формуле:

(3.4)

Из выражений (3.3) и (3.4) имеем

(3.5)

(3.6)

Продифференцировав уравнение (3.5) и подставив из (3.6), после преобразований получим

(3.7)

Тогда, согласно уравнению (3.5),

Следовательно, при установившемся движении массовый расход по длине элементарной струйки остается постоянным. При постоянной плотности скорости в различных сечениях элементарной струйки обратно пропорциональны площадям живых сечений.

В случае неустановившегося движения жидкости при постоянной плотности

Тогда уравнение неразрывности (3.7) примет вид

Гидродинамические уравнения Эйлера в естественной форме (3.2) для капельной жидкости можно проинтегрировать и задачу гидродинамики решить с учетом уравнения неразрывности. Согласно рис. 3.1, можно записать:

второе уравнение (3.2) можно представить в виде:

(3.8)

Уравнение (3.8) есть уравнение Бернулли в дифференциальной форме, которое можно интегрировать по длине элементарной струйки:

(3.9)

Для неустановившегося движения уравнение Бернулли справедливо только для двух частиц идеальной жидкости, находящихся на одной линии тока в рассматриваемый момент времени. При установившемся движении оно справедливо также и для одной и той же частицы жидкости, находящейся в двух положениях на траектории, ибо последняя совпадает с линией тока.

Выражение правой части уравнения (3.9) характеризует инерционный напор, влияющий на изменение энергии элементарной струйки по ее длине, поэтому его можно рассматривать как дополнительный источник энергии при имеет место установившееся движение.

характеризует гидродинамический напор. При установившемся движении идеальной жидкости напор постоянен и равен полной энергии элементарной струйки. Полную энергию (гидродинамический напор) при установившемся движении идеальной жидкости можно рассматривать как

Следовательно, при уменьшении потенциальной энергии на такую же величину возрастает кинетическая энергия, и наоборот.

Рассматривая элементарную струйку реальной жидкости, необходимо учитывать гидродинамические потери, обусловленные возрастающими при течении силами трения между отдельными слоями жидкости. Уравнение Бернулли для реальной жидкости можно записать в виде:

гидродинамические потери между двумя сечениями элементарной струйки жидкости [5].

Список литературы

1. Аметистов Е.В. Основы современной энергетики. -- М.: Издательский дом МЭИ, 2008. -- 472 с.

2. Баскаков А.П. Теплотехника. -2-е изд., перераб. - М.: Энергоатомиздат,? 1991.-- 224 с.: ил.

3. Волков Э.П. Энергетические установки электростанций. -- М.: Энергоатомиздат, 1983. -- 280 с.

4. Назмеев Ю.Г. Теплообменные аппараты ТЭС: Учеб. пособие для вузов. - 2-е изд., перераб. - Издательство МЭИ, 2002. - 260 е.: ил.

Размещено на Allbest.ru


Подобные документы

  • Ребристые, спиральные и витые теплообменные аппараты. Теплообменники с неподвижными трубными решетками, с температурными компенсаторами на кожухе, с плавающей головкой. Аппараты теплообменные с воздушным охлаждением. Теплообменники пластинчатые разборные.

    курсовая работа [3,1 M], добавлен 17.10.2014

  • Общие сведения о теплоэлектроцентрали, ее принципиальная технологическая схема. Влияние топлива на производительность ТЭЦ. Принцип действия коагулянта и флокулянта. Ионообменная очистка вод. Задачи мазутного хозяйства и топливно-транспортного цеха.

    контрольная работа [593,2 K], добавлен 25.10.2012

  • Применение теплообменных аппаратов, принцип их действия. Теплообменные аппараты с неподвижными трубными решетками, линзовым компенсатором на кожухе, плавающей головкой и U-образными трубами. Конструктивный и проверочный тепловой расчет аппарата.

    контрольная работа [1,2 M], добавлен 22.08.2015

  • Теплоэлектроцентраль как разновидность тепловой электростанции: знакомство с принципом работы, особенности строительства. Рассмотрение проблем выбора типа турбины и определения необходимых нагрузок. Общая характеристика принципиальной тепловой схемы.

    дипломная работа [1,7 M], добавлен 14.04.2014

  • Классификация теплообменных аппаратов по принципу действия (поверхностные и смесительные). Особенности подбора устройства. Схема кожухотрубного теплообменника. Основные удельные показатели, которые характеризуют эффективность теплообменных аппаратов.

    презентация [206,5 K], добавлен 28.09.2013

  • Сравнительный анализ теплообменников. Технологический процесс нагрева растительного масла. Теплотехнический, конструктивный, гидравлический и прочностной расчет теплообменника. Определение тепловой изоляции внутренней и наружной поверхностей трубы.

    дипломная работа [710,6 K], добавлен 08.09.2014

  • Определение коэффициента теплоотдачи от внутренней поверхности стенки трубки к охлаждающей воде. Потери давления при прохождении охлаждающей воды через конденсатор. Расчет удаляемой паровоздушной смеси. Гидравлический и тепловой расчет конденсатора.

    контрольная работа [491,8 K], добавлен 19.11.2013

  • Технологическая схема электростанции. Показатели ее тепловой экономичности. Выбор начальных и конечных параметров пара. Регенеративный подогрев питательной воды. Системы технического водоснабжения. Тепловые схемы и генеральный план электростанции.

    реферат [387,0 K], добавлен 21.02.2011

  • Теплообменные аппараты – устройства передачи тепла от одной среды к другой, их классификация; схемы движения теплоносителей. Гидравлическое сопротивление элементов теплообменного аппарата. Подбор нормативного вертикального подогревателя сетевой воды.

    курсовая работа [368,3 K], добавлен 10.04.2012

  • Описание конструкции кожухотрубчатого теплообменного аппарата. Гидравлический расчет патрубка. Выбор соединения трубок с трубными решётками. Определение толщины обечайки и цилиндрической части. Дополнительные условия проверки прочности трубной доски.

    реферат [1,6 M], добавлен 04.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.