Двигатели постоянного тока. Основное оборудование подстанций

Обратимость электрической машины. Двигатель с параллельным, последовательным и смешанным возбуждением, их моментная, скоростная механические, рабочие характеристики. Составление схем замещения. Виды выключателей высокого напряжения для подстанций.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 24.03.2014
Размер файла 643,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Двигатели постоянного тока

Классификация двигателей. Свойства двигателей постоянного тока как генераторов в основном определяются способом питания обмотки возбуждения. В связи с этим различают двигатели с параллельным, независимым, последовательным и смешанным возбуждением. Схемы включения двигателей отличаются от схем включения соответствующих генераторов только наличием пускового реостата, который вводится для ограничения тока при пуске.

Обратимость электрической машины. Машина постоянного тока с независимым или параллельным возбуждением, подключенная к сети с постоянным напряжением, может работать как в генераторном, так и в двигательном режиме и переходить из одного режима работы в другой.

Для контура «обмотка якоря -- сеть», согласно второму закону Кирхгофа,

E - U = Iа ?Rа (1),

откуда

Iа = (E - U)/?Rа . (2)

Если Е > U, то ток Iа совпадает по направлению с ЭДС Е, и машина работает в генераторном режиме (рис. 1, а). При этом электромагнитный момент М противоположен направлению вращения п, т. е. является тормозным. Уравнение (1) для генераторного режима имеет вид

U = E - Iа ?Rа (3).

Если Е < U, то ток Iа в уравнении (1) изменяет знак и направлен против ЭДС Е. В соответствии с этим изменяет знак и электромагнитный момент М, т. е. он действует по направлению вращения n. При этом машина работает в двигательном режиме (рис. 1,б) и уравнение (1) принимает вид

Рис. 1. Схемы работы машины постоянного тока в генераторном и двигательном режимах

U = E + Iа ?Rа, (4)

если за положительное направление тока Iа для двигательного режима принять его направление, встречное с ЭДС Е.

Таким образом, генераторы с независимым и параллельным возбуждением, подключенные к сети с напряжением U, автоматически переходят в двигательный режим, если их ЭДС Е меньше напряжения сети U. Эти двигатели автоматически переходят в генераторный режим, когда их ЭДС Е больше U. (5) (6)

При работе машины постоянного тока в двигательном режиме ЭДС Е и вращающий момент М определяются теми же формулами, что и в генераторном режиме:

Е = сеФп; (5)

М = сМФIа (6)

но момент имеет противоположное направление. Из (5) и (4) можно получить формулу для определения частоты вращения

п = Е/(се Ф) = (U - Iа ?Rа )/(се Ф). (7)

Двигатель с параллельным возбуждением. В этом двигателе (рис. 2, а) обмотка возбуждения подключена параллельно с обмоткой якоря к сети. В цепь обмотки возбуждения включен регулировочный реостат Rр.в., а в цепь якоря -- пусковой реостат Rп. Характерной особенностью двигателя является то, что его ток возбуждения Iв не зависит от тока якоря Iа (тока нагрузки), так как питание обмотки возбуждения по существу независимое. Следовательно, пренебрегая размагничивающим действием реакции якоря, можно приближенно считать, что и поток двигателя не зависит от нагрузки. При этом условии согласно (5) и (6) получаем, что зависимости М = f(Ia ) и n = f(Ia) (моментная и скоростная характеристики) линейные (рис. 2, б). Следовательно, линейна и механическая характеристика двигателя n = f(M) (рис. 3, а).

Если в цепь якоря включен добавочный резистор или реостат Rп , то

п = [U - Iа(?Rа + Rп )]/(сеФ) = п0 - ?n, (8)

где n0 = U/(сеФ) -- частота вращения при холостом ходе; ?п = (?Rа + Rп )Iа /(сеФ) -- снижение частоты, обусловленное суммарным падением напряжения во всех сопротивлениях, включенных в цепь якоря двигателя.

Рис. 2. Схема двигателя с параллельным возбуждением и его моментная и скоростная характеристики

Рис. 3. Механические и рабочие характеристики двигателя с параллельным возбуждением

Величина ?п , зависящая от суммы сопротивлений ?Rа + Rп , определяет наклон скоростной n = f(Ia) и механической n = f(M) характеристик к оси абсцисс. При отсутствии в цепи якоря добавочного сопротивления Rп указанные характеристики жесткие (естественные характеристики 1 на рис. 2, б и 3, а), так как падение напряжения Iа ?Rа в обмотках машины, включенных в цепь якоря, при номинальной нагрузке составляет лишь 3 -- 5% от Uном. При включении добавочного реостата угол наклона этих характеристик возрастает, вследствие чего образуется семейство реостатных характеристик 2, 3, 4, соответствующих различным сопротивлениям реостата Rпl. Rп2 и Rп3. Чем больше сопротивление Rп , тем больший угол наклона имеет реостатная характеристика, т. е. тем она мягче.

Реакция якоря, уменьшая несколько поток машины Ф при нагрузке, стремится придать естественной механической характеристике отрицательный угол наклона, при котором частота вращения n возрастает с увеличением момента М. Однако двигатель с такой характеристикой в большинстве электроприводов устойчиво работать не может. Поэтому современные двигатели большой и средней мощностей с параллельным возбуждением часто имеют небольшую последовательную обмотку возбуждения, которая придает механической характеристике необходимый наклон. МДС этой обмотки при токе Iном составляет около 10% от МДС параллельной обмотки.

Регулировочный реостат Rp.в позволяет изменять ток возбуждения двигателя Iв и его магнитный поток Ф. Как следует из (7), при этом изменяется и частота вращения n. В цепь обмотки возбуждения выключатели и предохранители не устанавливают, так как при разрыве этой цепи и небольшой нагрузке на валу частота вращения двигателя резко возрастает (двигатель идет в «разнос»). При этом сильно увеличивается ток якоря и может возникнуть круговой огонь.

Рабочие характеристики рассматриваемого двигателя (рис. 3, б) представляют собой зависимости потребляемой мощности Р1 тока Ia ? Iн частоты вращения n, момента М и КПД ? от отдаваемой мощности Р2 на валу двигателя при U = const и Iв = const. Характеристики n = f(P2) и М = f(P2) являются линейными, а зависимости Р1 = f(P2), Ia = f(P2) и ? = f(P2) имеют характер, общий для всех электрических машин. Иногда рабочие характеристики строят в зависимости от тока якоря Ia.

Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя. Механические и рабочие характеристики двигателя с независимым возбуждением аналогичны характеристикам двигателя с параллельным возбуждением, так как у них ток возбуждения Iв также не зависит от тока якоря Ia .

Двигатель с последовательным возбуждением. В этом двигателе (рис. 4, а) ток возбуждения Iв = Ia, поэтому магнитный поток Ф является некоторой функцией тока якоря Ia. Характер этой функции изменяется в зависимости от нагрузки двигателя. При Ia < (0,8 ? 0,9)Iном, когда магнитная система машины не насыщена, Ф = kф Ia , причем коэффициент пропорциональности kф в значительном диапазоне нагрузок остается практически постоянным. При дальнейшем возрастании тока якоря поток Ф возрастает медленнее, чем Ia , и при больших нагрузках (Ia > Iном ) можно считать, что Ф ? const. В соответствии с этим изменяются в зависимости n = f(Ia) и М = f(Ia).

Рис. 4. Схема двигателя с последовательным возбуждением и его моментная и скоростная характеристики

При Ia <(0,8 ? 0,9)Iном скоростная характеристика двигателя n = f(Ia) (рис. 4, б) имеет форму гиперболы, так как частота вращения

(9)

где С1 и С2 - постоянные.

При Ia > Iном скоростная характеристика становится линейной, так как частота вращения

(10)

где С'1 и С'2 -- постоянные.

Аналогично можно получить зависимость электромагнитного момента от тока якоря М = f(Ia). При Ia < (0,8 ? 0,9) Iном моментная характеристика М = f(Ia) имеет форму параболы. (рис. 4,б), так как электромагнитный момент

М = сМФIa = сМkфIа2= C3Iа2, (11)

где С3 -- постоянная.

При Ia > Iном моментная характеристика линейная, так как

М = сМФIa = C'3Iа, (12)

где C'3 -- постоянная. Механические характеристики n = f(М) (рис. 5, а) можно построить на основании зависимостей n = f(Ia) и М = f(Ia). При Ia < (0,8 ? 0,9) Iном частота вращения изменяется по закону

(13)

где С4 -- постоянная.

При Ia > Iном зависимость n = f(М) становится линейной.

Рис. 5. Механические и рабочие характеристики двигателя с последовательным возбуждением

Включая в цепь якоря пусковые реостаты с сопротивлениями Rп1, Rп2 и Rп3 кроме естественной характеристики 1 можно получить семейство реостатных характеристик 2, 3 и 4, причем, чем больше Rп , тем ниже располагается характеристика.

Рабочие характеристики двигателя с последовательным возбуждением приведены на рис. 5, б. Зависимости n = f(Р2) М = f(Р2) являются нелинейными; зависимости P1 = f(Р2), Iа = f(Р2) и ? = f(Р2) имеют примерно такой же характер, как и у двигателя с параллельным возбуждением.

Из рассмотрения рис. 5, а следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются мягкими и имеют гиперболический характер. При малых нагрузках частота вращения и резко возрастает и может превысить максимально допустимое значение (двигатель идет в «разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода или при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2 ? 0,25) Iном; только двигатели малой мощности (десятки ватт) используют для работы в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты для включения недопустимо.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Это объясняется тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением. При жесткой характеристике частота вращения и почти не зависит от момента М, поэтому мощность

Р2 = М? = 2?nМ/60 = С5М, (14)

где С5 -- постоянная.

При мягкой характеристике двигателя с последовательным возбуждением частота вращения и обратно пропорциональна vМ, вследствие чего

Р2 = М? = 2?nМ/60 = С'5vМ, (15)

где С5 -- постоянная.

Поэтому при изменении нагрузочного момента в широких пределах мощность Р2, а следовательно, мощность Р1 и ток Iа у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением; кроме того, они лучше переносят перегрузки. Например, при заданной кратности перегрузки по моменту М/Мном = kм ток якоря в двигателе с параллельным возбуждением увеличивается в kм раз, а в двигателе с последовательным возбуждением -- только в vkм раз. Поэтому двигатель с последовательным возбуждением развивает больший пусковой момент, так как при заданной кратности пускового тока Iп/Iном = ki пусковой момент его Мп = ki2Мном , а у двигателя с параллельным возбуждением Мп = kiМном .

Указанные преимущества двигателей с последовательным возбуждением наиболее четко проявляются в простых приводах, не имеющих систем автоматического управления. При наличии таких систем предпочтение всегда отдается двигателям с параллельным или независимым возбуждением, у. которых с помощью регуляторов тока возбуждения можно получить требуемую форму механической характеристики, например гиперболическую.

Двигатель со смешанным возбуждением. В этом двигателе (рис. 6, а) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения -- параллельной и последовательной. Поэтому его механические характеристики (рис. 6,б, кривые 3 и 4) располагаются между характеристиками двигателей с параллельным (прямая 1) и последовательным (кривая 2) возбуждением. В зависимости от соотношения МДС параллельной и последовательной обмоток при номинальном режиме можно приблизить характеристики двигателя со смешанным возбуждением к характеристике 1 (при малой МДС последовательной обмотки) или к характеристике 2 (при малой МДС параллельной обмотки). Одним из достоинств двигателя со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, так как его частота вращения n0 имеет конечное значение.

Рис. 6. Схема двигателя со смешанным возбуждением и его механические характеристики

2. Составление схем замещения

Составление схем замещения сводится к приведению параметров элементов и ЭДС различных ступеней трансформации к какой-либо одной ступени, выбранной за основную. Параметры элементов и ЭДС выражают в именованных или в относительных единицах. Для определения токов и напряжений в месте КЗ необходимо полную схему замещения преобразовать путем эквивалентирования ветвей к простейшей радиальной ветви согласно рис. 7. Тогда начальный ток Iпо*, о.е., в месте КЗ равен

Iпо*=Eэ/Zэ , (16)

где Eэ, Zэ - соответственно эквивалентные ЭДС и сопротивление простейшей радиальной схемы, о.е.

Рис. 7 Эквивалентная схема замещения

При преобразовании схем замещения используются следующие приемы:

1) преобразование последовательной цепи в эквивалентную;

2) преобразование параллельной цепи в эквивалентную;

3) преобразование “треугольника” сопротивлений в эквивалентную “звезду” сопротивлений (рис. 8) и наоборот (рис.9);

4) замена нескольких параллельно включенных источников эквивалентным (рис. 10).

Рекомендации по преобразованию схем замещения:

1) преобразование выгодно вести так, чтобы аварийная ветвь до конца преобразования была сохранена;

2) при металлическом трехфазном КЗ в узле с несколькими сходящимися в нем ветвями, этот узел можно разрезать, сохранив на конце каждой образовавшейся ветви такое же КЗ.

Формулы преобразования “треугольника” сопротивлений в эквивалентную “звезду” сопротивлений

ZА=ZAB•ZCA/(ZAB+ZCA+ZBC) ;

ZB=ZAB•ZBC/(ZAB+ZCA+ZBC) ;

ZC=ZBC•ZCA/(ZAB+ZCA+ZBC) ;

IАВ=(IАZА-IВZВ)/ZАВ ;

IСА=(IСZС-IАZА)/ZСА ;

IВС=(IВZВ-IСZС)/ZВС .

Рис. 8 Преобразование «треугольника» сопротивлений в эквивалентную «звезду»

Рис. 9 Преобразование «звездуы» сопротивлений в эквивалентный «треугольника»

Формулы преобразования “звезды” сопротивлений в эквивалентный “треугольник” сопротивлений

ZАВ=ZА+ZВ+ZА•ZВ/ZС ;

ZСА=ZА+ZС+ZА•ZС/ZВ ;

ZВС=ZВ+ZС+ZВ•ZС/ZА ;

IА=IАВ-IСА;

IВ=IВС-IАВ;

I С=IСА-IВС.

Рис. 10 Замена нескольких параллельно включенных источников эквивалентным.

Формулы преобразования нескольких параллельно включенных источников эквивалентным

Еэ=Yэ ?Yi Еi ;

Yэ= ?Yi ;

Yi=1/Zi ;

при n=2

Еэ=(Е1•Z22•Z1)/(Z1+Z2) ;

Zэ=(Z1•Z2)/(Z1+Z2) ;

I1=(Е1-U)/Z1 ;

I2=(Е2-U)/Z2.

3. Основное оборудование подстанций. Выключатели высокого напряжения

Требования, предъявляемые к выключателям, заключаются в следующем:

1) надежность в работе и безопасность для окружающих;

2) быстродействие - возможно малое время отключения;

3) удобство в обслуживании;

4) простота монтажа;

5) бесшумность работы;

6) сравнительно невысокая стоимость.

Применяемые в настоящее время выключатели отвечают перечисленным требованиям в большей или меньшей степени. Однако конструкторы выключателей стремятся к более полному соответствию характеристик выключателей выдвинутым выше требованиям.

Масляные выключатели

Различают масляные выключатели двух видов - баковые и маломасляные. Методы деионизации дугового промежутка в этих выключателях одинаковы. Различие заключается лишь в изоляции контактной системы от заземленного основания и в количестве масла. До недавнего времени в эксплуатации находились баковые выключатели следующих типов: ВМ-35, С-35, а также выключатели серии У напряжением от 35 до 220 кВ. Баковые выключатели предназначены для наружной установки, в настоящее время не производятся.

Основные недостатки баковых выключателей: взрыво- и пожароопасность; необходимость периодического контроля за состоянием и уровнем масла в баке и вводах; большой объем, масла, что обусловливает большую затрату времени на его замену, необходимость больших запасов масла; непригодность для установки внутри помещений.

Маломасляные выключатели

Маломасляные выключатели (горшковые) получили широкое распространение в закрытых и открытых распределительных устройствах всех напряжений. Масло в этих выключателях в основном служит дугогасящей средой и только частично изоляцией между разомкнутыми контактами. Изоляция токоведущих частей друг от друга и от заземленных конструкций осуществляется фарфором или другими твердыми изолирующими материалами. Контакты выключателей для внутренней установки находятся в стальном бачке (горшке), отсюда сохранилось название выключателей "горшковые". Маломасляные выключатели напряжением 35 кВ и выше имеют фарфоровый корпус. Самое широкое применение получили выключатели 6-10 кВ подвесного типа (рис. 11, а, б) (ВМГ-10, ВМП-10). В этих выключателях корпус крепится на фарфоровых изоляторах к общей раме для всех трех полюсов. В каждом полюсе предусмотрен один разрыв контактов и дугогасительная камера.

Рис. 11. Конструктивные схемы маломасляных выключателей: 1 - подвижный контакт; 2 - дугогасительная камера; 3 - неподвижный контакт; 4 - рабочие контакты

При больших номинальных токах обойтись одной парой контактов (которые выполняют роль рабочих и дугогасительных) трудно, поэтому предусматривают рабочие контакты снаружи выключателя, а дугогасительные - внутри металлического бачка (рис. 11, в, г). При больших отключаемых токах на каждый полюс имеется два дугогасительных разрыва (рис. 11, г). По такой схеме выполняются выключатели серий МГГ и МГ на напряжение до 20 кВ включительно. Массивные внешние рабочие контакты 4 позволяют рассчитать выключатель на большие номинальные токи (до 9500 А). При напряжениях 35 кВ и выше корпус выключателя выполняется фарфоровым (рис. 11, д), серия ВМК - выключатель маломасляный колонковый). В выключателях 35, 110 кВ предусмотрен один разрыв на полюс, при больших напряжениях - два разрыва и более.

Недостатки маломасляных выключателей: взрыво- и пожароопасность, хотя и значительно меньшая, чем у баковых выключателей; невозможность осуществления быстродействующего АПВ; необходимость периодического контроля, доливки, относительно частой замены масла в дугогасительных бачках; трудность установки встроенных трансформаторов тока; относительно малая отключающая способность.

Область применения маломасляных выключателей - закрытые распределительные устройства электростанций и подстанций 6, 10, 20, 35 и 110 кВ, комплектные распределительные устройства 6, 10 и 35 кВ и открытые распределительные устройства 35 и 110 кВ.

Воздушные выключатели

В воздушных выключателях гашение дуги происходит сжатым воздухом при давлении 2-4 МПа, а изоляция токоведущих частей и дугогасительного устройства осуществляется фарфором или другими твердыми изолирующими материалами. Конструктивные схемы воздушных выключателей различны и зависят от их номинального напряжения, способа создания изоляционного промежутка между контактами в отключенном положении, способа подачи сжатого воздуха в дугогасительное устройство. В выключателях на большие номинальные токи (рис. 12, а, б) имеется главный и дугогасительный контур подобно маломасляным выключателям МГ и МГГ. Основная часть тока во включенном положении выключателя проходит по главным контактам 4, расположенным открыто. При отключении выключателя главные контакты размыкаются первыми, после чего весь ток проходит по дугогасительным контактам, заключенным в камере 2. К моменту размыкания этих контактов в камеру подается сжатый воздух из резервуара 1, создается мощное дутье, гасящее дугу. Дутье может быть продольным (рис. 12, а) или поперечным (рис. 12, б). Необходимый изоляционный промежуток между контактами в отключенном положении создается в дугогасительной камере путем разведения контактов на достаточное расстояние. Выключатели, выполненные по конструктивной схеме с открытым отделителем (рис. 12, а), изготовляются для внутренней установки на напряжение 15 и 20 кВ и ток до 20000 А (серия ВВГ). В данном типе выключателей после отключения отделителя 5 прекращается подача сжатого воздуха в камеры и дугогасительные контакты замыкаются.

Рис. 12. Конструктивные схемы воздушных выключателей: 1 - резервуар со сжатым воздухом; 2 - дугогасительная камера; 3 - шунтирующий резистор; 4 - главные контакты; 5 - отделитель; 6 - емкостный делитель напряжения на 110 кВ - два разрыва на фазу (г)

В воздушных выключателях для открытой установки на напряжение 35 кВ (ВВ-35) достаточно иметь один разрыв на фазу (рис. 12, в). В выключателях напряжением 110 кВ и выше после гашения дуги размыкаются контакты отделителя 5 и камера отделителя остается заполненной сжатым воздухом на все время отключенного положения. При этом в дугогасительную камеру сжатый воздух не подается и контакты в ней замыкаются. По данной конструктивной схеме (рис. 12, г) созданы выключатели серии ВВ на напряжение до 500 кВ. Чем выше номинальное напряжение и чем больше отключаемая мощность, тем больше должно быть разрывов в дугогасительной камере и в отделителе. По конструктивной схеме рис 12, г выполняются воздухонаполненные выключатели серии ВВБ. Напряжение модуля ВВБ 110 кВ при давлении сжатого воздуха в гасительной камере 2 МПа. Номинальное напряжение модуля выключателя серии ВВБК (крупномодульного) составляет 220 кВ, а давление воздуха в гасительной камере 4 МПа. Аналогичную конструктивную схему имеют выключатели серии ВНВ: модуль напряжением 220 кВ при давлении 4 МПа. Для выключателей серии ВВБ количество дугогасительных камер (модулей) зависит от напряжения (110 кВ - одна; 220 кВ - две; 330 кВ - четыре; 500 кВ - шесть; 750 кВ - восемь), а для крупномодульных выключателей (ВВБК, ВНВ) количество модулей соответственно в два раза меньше.

Элегазовые выключатели

Элегаз (SF6 - шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2 - 3 раза выше прочности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла.

В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Исключительная способность элегаза гасить дугу объясняется тем, что его молекулы улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза, т. е. при газовом дутье, поглощение электронов из дугового столба происходит еще интенсивнее.

В элегазовых выключателях применяют автопневматические (автокомпрессионные) дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Элегазовый выключатель представляет собой замкнутую систему без выброса газа наружу.

В настоящее время элегазовые выключатели применяются на всех классах напряжений (6-750 кВ) при давлении 0,15 - 0,6 МПа. Повышенное давление применяется для выключателей более высоких классов напряжения. Хорошо зарекомендовали элегазовые выключатели следующих зарубежных фирм: ALSTOM; SIEMENS; Merlin Gerin и др. Освоен выпуск современных элегазовых выключателей ПО "Уралэлектротяжмаш": баковые выключатели серии ВЭБ, ВГБ и колонковые выключатели серии ВГТ, ВГУ.

В качестве примера рассмотрим конструкцию выключателя серии LF фирмы Merlin Gerin напряжением 6-10 кВ (рис. 13).

Базовая модель выключателя состоит из следующих элементов:

- корпуса выключателя, в котором расположены все три полюса, представляющего собой "сосуд под давлением", заполненный элегазом под низким избыточным давлением (0,15 МПа или 1,5 атм.);

- механического привода типа RI;

- передней панели привода с рукояткой для ручного взвода пружин и индикаторами состояния пружины и выключателя;

- высоковольтных силовых контактных площадок;

- многоштырьевого разъема для подключения цепей вторичной коммутации.

Автокомпрессионный метод гашения дуги:

Рис. 13. Процесс отключения элегазового выключателя серии LF

В выключателе LF применен принцип вращения дуги в элегазовой среде и метод автокомпрессии, что в комплексе позволяет создать наилучшие условия для гашения дуги. Это обеспечивает сокращение мощности привода выключателя, снижение износа дугогасительных контактов и, таким образом, повышает механический и электрический ресурс. Основные этапы гашения дуги: Выключатель включен (рис. 13, а). Основные контакты разомкнуты (рис. 13, б). Разомкнуты основные контакты (а), ток проходит через дугогасительные контакты (b). Гашение дуги (рис. 13, в). Разомкнулись дугогасительные контакты. При расхождении дугогасительных контактов в дугогасительной камере происходит загорание дуги. Воздействие магнитного поля, создаваемого катушкой (d), вызывает закручивание дуги и ее охлаждение. Избыточное давление в расширительном объеме (с), обусловленное повышением температуры, вызывает охлаждение дуги потоком элегаза, направленным из зоны с высоким давлением в зону с более низким давлением, что приводит к удлинению дуги и ее затягиванию в полость цилиндрического дугогасительного контакта (е). При прохождении тока через 0 дуга гарантировано гаснет. Выключатель выключен (рис. 13, г).

Вакуумные выключатели

Электрическая прочность вакуума значительно выше прочности других сред, применяемых в выключателях. Объясняется это увеличением длины среднего свободного пробега электронов, атомов, ионов и молекул по мере уменьшения давления. В вакууме длина свободного пробега частиц превышает размеры вакуумной камеры.

В этих условиях удары частиц о стенки камеры происходят значительно чаще, чем соударения между частицами. На рис. 14 показаны зависимости пробивного напряжения вакуума и воздуха от расстояния между электродами диаметром 3/8" из вольфрама.

Рис. 14. Восстанавливающаяся электрическая прочность промежутка длиной 1/4" после отключения тока 1600 А в вакууме и различных газах при атмосферном давлении

При столь высокой электрической прочности расстояние между контактами может быть очень малым (2 - 2,5 см), поэтому размеры камеры могут быть также относительно небольшими. Процесс восстановления электрической прочности промежутка между контактами при отключении тока протекает в вакууме значительно быстрее, чем в газах.

Уровень вакуума (остаточное давление газов) в современных промышленных дугогасительных камерах обычно составляет Па. В соответствии с теорией электропрочности газов, необходимые изоляционные качества вакуумного промежутка достигаются и при меньших уровнях вакуума (порядка Па), однако для современного уровня вакуумных технологий, создание и поддержание в течение времени жизни вакуумной камеры уровня Па не составляет проблемы. Это обеспечивает вакуумным камерам запасы электропрочности на весь срок эксплуатации (20-30 лет).

Типовая конструкция вакуумной дугогасительной камеры приведена на рис. 14.

электрический двигатель выключатель напряжение

Рис. 14. Конструктивная схема вакуумной дугогасительной камеры

Конструкция вакуумной камеры состоит из пары контактов (4; 5), один из которых является подвижным (5), заключенных в ваккумно-плотную оболочку, спаянную из керамических или стеклянных изоляторов (3; 7), верхней и нижней металлических крышек (2; 8) и металлического экрана (6). Перемещение подвижного контакта относительно неподвижного обеспечивается путем применения сильфона (9). Выводы камеры (1; 10) служат для подключения ее к главной токоведущей цепи выключателя. Надо отметить, что для изготовления оболочки вакуумной камеры применяются только специальные вакуумноплотные, очищенные от растворенных газов металлы - медь и специальные сплавы, а также специальная керамика. Контакты вакуумной камеры изготавливаются из металлокерамической композиции (как правило, это медь-хром в соотношении 50 %-50 % или 70 %-30 %), обеспечивающей высокую отключающую способность, износостойкость и препятствующей возникновению точек сваривания на поверхности контактов. Цилиндрические керамические изоляторы, совместно с вакуумным промежутком при разведенных контактах обеспечивают изоляцию между выводами камеры при отключенном положении выключателя.

Таврида-электрик выпустила новую конструкцию вакуумного выключателя с магнитной защелкой (рис. 15). В основу его конструкции заложен принцип соосности электромагнита привода и вакуумной дугогасительной камеры в каждом полюсе выключателя.

Включение выключателя осуществляется в следующей последовательности. В исходном состоянии контакты вакуумной дугогасительной камеры разомкнуты за счет воздействия на них отключающей пружины 7 через тяговый изолятор 5. При прикладывании напряжения положительной полярности к катушке 9 электромагнита, в зазоре магнитной системы (см. рис. 15) нарастает магнитный поток. В момент, когда сила тяги якоря, создаваемая магнитным потоком, превосходит усилие пружины отключения 7, якорь 11 электромагнита вместе с тяговым изолятором 5 и подвижным контактом 3 вакуумной камеры начинает движение вверх, сжимая пружину отключения. При этом в катушке возникает двигательная противо-ЭДС, которая препятствует дальнейшему нарастанию тока, и даже несколько уменьшает его. В процессе движения якорь набирает скорость около 1 м/с, что позволяет избежать предпробоев при включении и исключить дребезг контактов ВДК. При замыкании контактов вакуумной камеры, в магнитной системе остается зазор дополнительного поджатия равный 2 мм. Скорость движения якоря резко падает, так как ему приходится преодолевать еще и усилие пружины дополнительного контактного поджатия 6. Однако под воздействием усилия, создаваемого магнитным потоком и инерцией, якорь 11 продолжает двигаться вверх, сжимая пружину отключения 7 и пружину 6 дополнительного контактного поджатия. В момент замыкания магнитной системы якорь соприкасается с верхней крышкой привода 8 и останавливается. После окончания процесса включения ток катушки привода отключается. Выключатель остается во включенном положении за счет остаточной индукции, создаваемой кольцевым постоянным магнитом 10, который удерживает якорь 11 в притянутом к верхней крышке 8 положении без дополнительной токовой подпитки.

Для отключения выключателя необходимо приложить к выводам катушки напряжение отрицательной полярности.

В настоящее время вакуумные выключатели стали доминирующими аппаратами для электрических сетей с напряжением 6-36 кВ. Так, доля вакуумных выключателей в общем количестве выпускаемых аппаратов в Европе и США достигает 70 %, в Японии - 100 %. В России в последние годы эта доля имеет постоянную тенденцию к росту, и в 1997 году превысила 50 %-ю отметку.

Основными преимуществами ВВ (по сравнению с масляными и газовыми выключателями), определяющими рост их доли на рынке, являются:

- более высокая надежность;

- меньшие затраты на обслуживание.

Размещено на Allbest.ru


Подобные документы

  • Двигатели с независимым и с параллельным возбуждением и с постоянными магнитами. Скоростные и механические характеристики. Свойство саморегулирования вращающего момента в соответствии с противодействующим моментом. Способы регулирования частоты вращения.

    контрольная работа [262,8 K], добавлен 25.07.2013

  • Расчет естественных электромеханической и механической статистических характеристик краново-металлургического тихоходного двигателя постоянного тока с последовательным возбуждением. Сопротивление пускового реостата, характеристики при пуске двигателя.

    контрольная работа [477,7 K], добавлен 19.03.2014

  • Изучение механических характеристик электродвигателей постоянного тока с параллельным, независимым и последовательным возбуждением. Тормозные режимы. Электродвигатель переменного тока с фазным ротором. Изучение схем пуска двигателей, функции времени.

    лабораторная работа [1,3 M], добавлен 23.10.2009

  • Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

    реферат [166,2 K], добавлен 11.12.2010

  • Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

    реферат [3,6 M], добавлен 17.12.2009

  • Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.

    презентация [4,9 M], добавлен 09.11.2013

  • Проектирование двигателя постоянного тока с мощностью 4,5 кВт, степенью защиты IP44. Выбор электромагнитных нагрузок. Расчет обмотки якоря, магнитной цепи, обмотки добавочных полюсов. Рабочие характеристики двигателя со стабилизирующей обмоткой и без нее.

    курсовая работа [1,5 M], добавлен 07.05.2014

  • Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.

    презентация [1,8 M], добавлен 25.07.2013

  • Отображение двигателя в режиме динамического торможения. Расчет пускового реостата и построение пусковых характеристик для двигателя постоянного тока с параллельным возбуждением. Запись уравнения скоростной характеристики с учетом требуемых параметров.

    контрольная работа [1002,6 K], добавлен 31.01.2011

  • Структурная схема контроля трансформаторных подстанций. Характеристика семейства PROFIBUS. Принцип действия измерительного трансформатора постоянного тока. Режим управления преобразователем частоты. Оценка погрешности каналов измерения напряжения и тока.

    курсовая работа [1,2 M], добавлен 29.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.