Классификация и система условных обозначений конденсаторов
Основные типы конденсаторов по назначению с неорганическим диэлектриком: предназначенные для использования в резонансных контурах, предназначенные для использования в цепях фильтров, блокировки и развязки, керамические конденсаторы с барьерным слоем.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 25.02.2014 |
Размер файла | 343,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
КЛАССИФИКАЦИЯ И СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ КОНДЕНСАТОРОВ
КОНДЕНСАТОРЫ С НЕОРГАНИЧЕСКИМ ДИЭЛЕКТРИКОМ
Конденсаторы с неорганическим диэлектриком можно разделить на три группы: низковольтные, высоковольтные и Помехоподавляющие. В качестве диэлектрика в них используется керамика, стекло, стеклоэмаль, стеклокерамика и слюда. Обкладки выполняются в виде тонкого слоя металла, нанесенного на диэлектрик путем непосредственном его металлизации, или в виде тонкой фольги.
Группа низковольтных конденсаторов включает в себя низкочастотные и высокочастотные конденсаторы.
По назначению они подразделяются на три типа:
тип 1 -- конденсаторы, предназначенные для использования в резонансных контурах или других цепях, где малые потерн и высокая стабильность емкости имеют существенное значение;
тип 2-- конденсаторы, предназначенные для использования в цепях фильтров, блокировки и развязки или других цепях, где малые потери и высокая стабильность емкости не имеют существенного значения;
тип 3 -- керамические конденсаторы с барьерным слоем, предназначенные для работы в тех же цепях, что и конденсаторы типа 2, но имеющие несколько меньшее значение сопротивления изоляции и большее значение тангенса угла диэлектрических потерь, что ограничивает область применения низкими частотами.
Обычно конденсаторы типа 1 считаются высокочастотными, а типов 2 и 3 -- низкочастотными. Определенной границы по частоте между конденсаторами типов 1 и 2 не существует. Высокочастотные конденсаторы работают в цепях с частотой до сотен мегагерц, а некоторые типы используют в гигагерцевом диапазоне.
Слюдяные и стеклоэмалевые (стеклянные) конденсаторы относятся к конденсаторам типа 1, стеклокерамические могут быть как типа 1, так и типа 2, керамические -- трех типов.
Высоковольтные конденсаторы большой и малой реактивной мощности делаются в основном с диэлектриком из керамики и слюды. По назначению они могут быть типов 1 и 2 и так же, как низковольтные конденсаторы, они разделяются на высокочастотные и низкочастотные.
Основным параметром для высоковольтных низкочастотных конденсаторов является удельная энергия, поэтому керамику для них подбирают с большой диэлектрической проницаемостью. Для высокочастотных конденсаторов основным параметром является допустимая реактивная мощность. Она характеризует нагрузочную способность конденсатора при наличии больших напряжений высокой частоты. Для увеличения реактивной мощности, выбирают керамику с малыми потерями, а конструкцию и выводы конденсаторов рассчитывают на возможность прохождения больших токов.
Высоковольтные слюдяные конденсаторы делают фольговыми, так как они предназначены для работы при повышенных токовых нагрузках.
Помехоподавляющие конденсаторы с неорганическим керамическим диэлектриком разделяются на опорные и проходные. Их основное назначение -- подавление индустриальных и высокочастотных помех, создаваемых промышленными и бытовыми приборами, выпрямительными устройствами и др., а также помех атмосферных и помех, излучаемых различными радиоэлектронными устройствами, т. е. по существу они являются фильтрами нижних частот. К этой группе, исходя из функционального назначения и конструктивного исполнения, условно можно отнести керамические фильтры.
Опорные конденсаторы -- это конденсаторы, одним из выводов которых является опорная металлическая пластина с резьбовым креплением.
Проходные конденсаторы делают коаксиальными -- один из выводов которых представляет собой токонесущий стержень, по которому протекает полный ток внешней цепи, и некоаксиальными -- через выводы которых протекает полный ток внешней цепи.
Проходные керамические конденсаторы имеют конструкцию трубчатого или дискового типа в виде многослойных монолитных шайб.
Если в конденсаторах с целью повышения резонансной частоты принимаются меры к уменьшению собственной индуктивности, то в фильтрах, наоборот, к емкости добавляют внешнюю индуктивность (ферритовый сердечник) либо используют индуктивность выводов. При этом в зависимости от соединения емкости и индуктивности возможны следующие схемы включения: Г-образные, Т-образные и П-образные.
Они разделяются на конденсаторы: общего назначения, неполярные, высокочастотные, импульсные, пусковые и помехолодавляющие. В качестве диэлектрика в них, используется оксидный, образуемый электрохимическим путем на аноде -- металлической обкладке из некоторых металлов.
В зависимости от материала анода оксидные конденсаторы подразделяют на алюминиевые, танталовые и ниобиевые. Второй обкладкой конденсатора -- катодом служит электролит, пропитывающий бумажную или тканевую прокладку в оксидно-электролитических (жидкостных) алюминиевых и танталовых конденсаторах, жидкий или гелеобразный электролит в танталовых объемно-пористых конденсаторах и полупроводник (двуокись марганца) в оксидно-полупроводниковых конденсаторах.
Конденсаторы с оксидным диэлектриком -- низковольтные, с относительно большими потерями, но в отличие от других типов низковольтных конденсаторов имеют несравнимо большие заряды и большие емкости (от единиц до сотен тысяч микрофарад). Они используются в фильтрах источников электропитания, цепях развязки, шунтирующих и переходных цепях полупроводниковых устройств на низких частотах и т. п.
Конденсаторы группы общего назначения имеют униполярную (одностороннюю) проводимость, вследствие чего их эксплуатация возможна только при положительном потенциале на аноде. Тем не менее, это наиболее распространенные оксидные конденсаторы. Они могут быть жидкостными, объемно-пористыми и оксидно-полупроводниковыми.
Неполярные конденсаторы с оксидным диэлектриком могут включаться в цепь постоянного и пульсирующего тока без учета полярности, а также допускать смену полярности в процессе эксплуатации.
Неполярные конденсаторы делают оксидно-электролитические (жидкостные) алюминиевые и танталовые и оксидно-полупроводниковые танталовые.
Высокочастотные конденсаторы (алюминиевые жидкостные и танталовые оксидно-полупроводниковые) широко применяются в источниках вторичного электропитания, в качестве накопительных и фильтрующих элементов в цепях развязок и переходных цепях полупроводниковых устройств в диапазоне частот пульсирующего тока от десятков герц до сотен килогерц. Отсюда следует, что понятие «высокочастотные» для оксидных конденсаторов относительное. По частотным характеристикам их нельзя сравнивать с конденсаторами на неорганической основе.
Для расширения возможностей использования оксидных конденсаторов в более широком диапазоне частот необходимо снижать их полное сопротивление. Это оказалось возможным при появлений совершенно новых конструктивных решений -- четырехвыводных конструкций и плоской конструкции типа «книга», позволяющих их эксплуатацию на значительно более высоких частотах.
Импульсные конденсаторы используются в электрических цепях с относительно длительным зарядом и быстрым разрядом, например в устройствах фотовспышек и др. Такие конденсаторы должны быть энергоемкими, иметь малое полное сопротивление и большое рабочее напряжение. Наилучшим образом этому требованию удовлетворяют оксидно-электролитические алюминиевые конденсаторы с напряжением до 500 В.
Пусковые конденсаторы используются в асинхронных двигателях, в которых емкость включается только на момент пуска двигателя. При наличии пусковой емкости вращающееся поле двигателя при пуске приближается к круговому, а магнитный поток увеличивается. Все это способствует повышению пускового момента, улучшает характеристики двигателя.
В связи с тем что пусковые конденсаторы включаются в сеть переменного тока, они должны быть неполярными и иметь сравнительно большое для оксидных конденсаторов рабочее напряжение переменного тока, несколько превышающее напряжение промышленной сети. На практике используются пусковые конденсаторы емкостью порядка десятков и сотен микрофарад, созданные на основе алюминиевых оксидных пленок с жидким электролитом. конденсатор диэлектрик резонансный
В группу оксидных помехоподавляющих конденсаторов входят только проходные оксидно-полупроводниковые танталовые конденсаторы. Они так же, как и проходные конденсаторы других типов, выполняют роль фильтра нижних частот, но в отличие от них имеют гораздо большие значения емкостей, что дает возможность сдвигать частотную характеристику в область более низких частот.
Конденсаторы с газообразным диэлектриком. По выполняемой функции и характеру изменения емкости эти конденсаторы разделяются на постоянные и переменные. В качестве диэлектрика в них используется воздух, сжатый газ (азот, фреон, элегаз), вакуум. Особенностью газообразных диэлектриков являются малое значение тангенса угла диэлектрических потерь (до 105) и высокая стабильность электрических параметров. Поэтому основной областью их применения является высоковольтная и высокочастотная аппаратура.
В радиоэлектронной аппаратуре из конденсаторов с газообразным диэлектриком наибольшее распространение получили вакуумные. По сравнению с воздушными они имеют значительно большие удельные емкости, меньшие потери в широком диапазоне частот, более высокую электрическую прочность и стабильность параметров при изменении окружающей среды. По сравнению с газонаполненными, требующими периодической подкачки газа из-за его утечки, вакуумные конденсаторы имеют более простую и легкую конструкцию, меньшие потери и лучшую температурную стабильность; они более устойчивы к вибрации, допускают более высокое значение реактивной мощности.
Вакуумные конденсаторы переменной емкости обладают малым значением момента вращения, а масса и габариты их значительно ниже по сравнению с воздушными конденсаторами. Коэффициент перекрытия по емкости вакуумных переменных конденсаторов может достигать 100 и. более.
Вакуумные конденсаторы применяются в передающих устройствах ДВ, СВ- и KB диапазонов на частотах до 30--80 МГц в качестве контурных, блокировочных, фильтровых и разделительных конденсаторов, используются также в качестве накопителей в импульсных искусственных линиях формирования и различного рода мощных высоковольтных высокочастотных установка.
Проводники и диэлектрики в электрическом поле
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле складывается в соответствии с принципом суперпозиции из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.
Вещество многообразно по своим электрическим свойствам. Наиболее широкие классы вещества составляют проводники и диэлектрики.
Основная особенность проводников - наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники - металлы.
В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды (рис. 1.5.1). Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды -индукционными зарядами.
Индукционные заряды создают свое собственное поле которое компенсирует внешнее поле во всем объеме проводника: (внутри проводника).
Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.
Рисунок 1.5.1. Электростатическая индукция |
Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными. Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю. На этом основана электростатическая защита - чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики (рис. 1.5.2).
Рисунок 1.5.2. Электростатическая защита. Поле в металлической полости равно нулю |
Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.
В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.
При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.
Связанные заряды создают электрическое поле которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика. В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля
Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества.
Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная и электронная поляризации. Эти механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков.
Ориентационная или дипольная поляризация возникает в случае полярных диэлектриков, состоящих из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы представляют собой микроскопические электрические диполи - нейтральную совокупность двух зарядов, равных по модулю и противоположных по знаку, расположенных на некотором расстоянии друг от друга. Дипольным моментом обладает, например, молекула воды, а также молекулы ряда других диэлектриков (H2S, NO2 и т. д.).
При отсутствии внешнего электрического поля оси молекулярных диполей из-за теплового движения ориентированы хаотично, так что на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем равен нулю.
При внесении диэлектрика во внешнее поле возникает частичная ориентация молекулярных диполей. В результате на поверхности диэлектрика появляются нескомпенсированные макроскопические связанные заряды, создающие поле направленное навстречу внешнему полю (рис. 1.5.3).
Рисунок 1.5.3. Ориентационный механизм поляризации полярного диэлектрика |
Поляризация полярных диэлектриков сильно зависит от температуры, так как тепловое движение молекул играет роль дезориентирующего фактора.
Электронный или упругий механизм проявляется при поляризации неполярных диэлектриков, молекулы которых не обладают в отсутствие внешнего поля дипольным моментом. Под действием электрического поля молекулы неполярных диэлектриков деформируются - положительные заряды смещаются в направлении вектора а отрицательные - в противоположном направлении. В результате каждая молекула превращается в электрический диполь, ось которого направлена вдоль внешнего поля. На поверхности диэлектрика появляются нескомпенсированные связанные заряды, создающие свое поле направленное навстречу внешнему полю Так происходит поляризация неполярного диэлектрика (рис. 1.5.4).
Деформация неполярных молекул под действием внешнего электрического поля не зависит от их теплового движения, поэтому поляризация неполярного диэлектрика не зависит от температуры. Примером неполярной молекулы может служить молекула метана CH4. У этой молекулы четырехкратно ионизированный ион углерода C4-располагается в центре правильной пирамиды, в вершинах которой находятся ионы водорода H+. При наложении внешнего электрического поля ион углерода смещается из центра пирамиды, и у молекулы возникает дипольный момент, пропорциональный внешнему полю.
Рисунок 1.5.4. Поляризация неполярного диэлектрика |
Электрическое поле связанных зарядов, возникающее при поляризации полярных и неполярных диэлектриков, изменяется по модулю прямо пропорционально модулю внешнего поля В очень сильных электрических полях эта закономерность может нарушаться, и тогда проявляются различные нелинейные эффекты. В случае полярных диэлектриков в сильных полях может наблюдаться эффект насыщения, когда все молекулярные диполи выстраиваются вдоль силовых линий. В случае неполярных диэлектриков сильное внешнее поле, сравнимое по модулю с внутриатомным полем, может существенно деформировать атомы или молекулы вещества и изменить их электрические свойства. Однако, эти явления практически никогда не наблюдаются, так как для этого нужны поля с напряженностью порядка 1010-1012 В/м. Между тем, гораздо раньше наступает электрический пробой диэлектрика.
У многих неполярных молекул при поляризации деформируются электронные оболочки, поэтому этот механизм получил название электронной поляризации. Этот механизм является универсальным, поскольку деформация электронных оболочек под действием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.
В случае твердых кристаллических диэлектриков наблюдается так называемая ионная поляризация, при которой ионы разных знаков, составляющие кристаллическую решетку, при наложении внешнего поля смещаются в противоположных направлениях, вследствие чего на гранях кристалла появляются связанные (нескомпенсированные) заряды. Примером такого механизма может служить поляризация кристалла NaCl, в котором ионы Na+ и Cl- составляют две подрешетки, вложенные друг в друга. В отсутствие внешнего поля каждая элементарная ячейка кристалла NaCl (см. Часть I § 3.6 ) электронейтральна и не обладает дипольным моментом. Во внешнем электрическом поле обе подрешетки смещаются в противоположных направлениях, т. е. кристалл поляризуется.
При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле в диэлектрике в е раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:
Если в однородном диэлектрике с диэлектрической проницаемостью е находится точечный заряд Q, то напряженность поля создаваемого этим зарядом в некоторой точке, и потенциал ц в е раз меньше, чем в вакууме:
Электромагнетизм
Электромагнетизм - это явления, возникающие в результате взаимодействия электрического тока и магнетизма. На этом основано, в частности, работа электродвигателей и громкоговорителей. Электромагнетизм - это явления, возникающие в результате взаимодействия электрического тока и магнетизма. На этом основано, в частности, работа электродвигателей и громкоговорителей.
Подковообразные, стержневые и кольцевые магниты относятся к постоянным магнитам, их нельзя лишить магнитных свойств, а затем вернуть им эти свойства. Электромагниты не являются постоянными, они имеют магнитные свойства, только когда по катушке (обмотке) проходит ток.
Появление магнитного поля вокруг проводника с током впервые обнаружил датский физик Ханс Кристиан Эрстед, когда во время одной из своих публичных лекций приблизил компас к проводнику, по которому пропускали ток. Магнитная стрелка отклонилась, указывая на наличие магнитного поля вблизи проводника.
Чтобы магнитное поле было более сильным, обмотки электромагнита содержат много витков. Такие катушки обычно называют соленоидами. Как правило, соленоиды наматывают на сердечник из магнитного материала, в частности железа. Когда по катушке пропускают ток, сердечник намагничивается, и его магнитное поле добавляется в поле соленоида, усиливая его. Чтобы изготовить простой электромагнит, можно намотать изолированный проводник на железный гвоздь и присоединить конце проводника к батарейки.
Электромагниты удобны в использовании, так как их магнитным полем можноуправлять, изменяя ток в соленоиде. Часто ток просто включают и выключают, как,например, в электромагнитном подъемники для погрузки металлолома.
В динамических громкоговорителях по катушке, прикрепленной к подставке диффузора, проходит пульсирующий ток. Переменное магнитное поле заставляет катушку колебаться вдоль сердечника из магнитного материала. При этом колеблется диффузор, излучая звуковые волны.
В поезде на магнитной подвеске тоже используют электромагниты. Под вагоном устанавливают несущие электромагниты, а на рейке - катушки линейного электродвигателя. Результате их взаимодействия возникает сила, которая поднимает вагон над колеей и тянет его вперед.
Электромагнит -- устройство, создающее магнитное поле при прохождении электрического тока. Обычно электромагнит состоит из обмотки иферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.
Обмотку электромагнитов изготавливают из изолированного алюминиевого или медного провода, хотя есть и сверхпроводящие электромагниты. Магнитопроводы изготавливают из магнитно-мягких материалов -- обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов. Для снижения потерь на вихревые токи (токи Фуко) магнитопроводы выполняют из набора листов.
Вихревые токи или токи Фуком (в честь Ж. Б. Л. Фуко) -- вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного поля.
Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786--1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819--1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольце. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии справилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и т. п., а также в некоторых конструкциях поездов, для торможения.
Тепловое действие токов Фуко используется в индукционных печах -- в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нём возникают вихревые токи, разогревающие его до плавления.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.
Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечниковтрансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.
Параллельное соединение активных и реактивных сопротивлений в цепи переменного тока
На изображении ниже показано параллельное соединение активного, индуктивного и емкостного сопротивлений.
Напряжение на всех параллельных ветвях одно и то же:
Из этого следует, что токи в параллельных ветвях здесь тоже обратно пропорциональны сопротивлениям ветвей:
или в общем виде:
Выражения справа являются отношением проводимостей. Следовательно, токи в параллельных ветвях пропорциональны полным проводимостям ветвей:
а для цепи, приведенной на изображении
Ток в неразветвленной части цепи равен сумме токов в ветвях. Для мгновенных значений (взятых для одного и того же момента времени) это будет алгебраическая сумма; для эффективных значений - геометрическая. Первый закон Кирхгофа для цепей переменного тока читается так: ток в неразветвленной части цепи равен геометрической сумме токов в параллельных ветвях.
Построение векторных диаграмм для параллельных цепей переменного тока начинается с вектора напряжения - общего для всех параллельных ветвей. Вектор U откладывается горизонтально. Ток в цепи с активным сопротивлением в, фазе с напряжением: вектор Ia откладывается по вектору U. Ток в цепи с индуктивным сопротивлением отстает по фазе от напряжения на четверть периода; поэтому вектор IL откладывается вниз от вектора U под углом 90°. Ток в емкостном сопротивлении опережает по фазе напряжение на четверть периода: вектор IC откладывается под углом 90° к вектору напряжения вверх.
Разность IL и IC дает реактивную составляющую тока IP. Полный ток находится геометрическим сложением Ia и IP:
На изображении выше IL > IC и разностный вектор IP, а также угол сдвига фаз ? откладываются вниз от вектора напряжения: в цепи индуктивный (точнее активно-индуктивный) режим. Очевидно, что подбирая соответственно величинуIC (емкость C и емкостное сопротивление xC), можно менять в цепи угол сдвига фаз ? - по величине и по знаку. Как будет видно далее, взаимокомпенсирование индуктивной и емкостной составляющих полного тока цепи имеет огромное практическое значение и широко используется для искусственного регулирования сдвига фаз между напряжением и током, измеряемого углом ?.
Векторная диаграмма -- графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков -- векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.
Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью щ. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) -- фазе.
Сумма (или разность) двух и более колебаний на векторной диаграмме представлена при этом (геометрической) суммой[1] (или разностью) векторов этих колебаний. Мгновенное значение искомой величины определяется при этом проекцией вектора суммы на ось Оx, амплитуда -- длиной этого вектора, а фаза -- углом его поворота относительно Ox.
Векторной диаграммой называется совокупность векторов на комплексной плоскости, соответствующая комплексным величинам и/или параметрам электрической цепи и их связям.
Векторные диаграммы могут быть точными и качественными. Точные диаграммы строятся с соблюдением масштабов всех величин по результатам численного анализа. Они предназначены в основном для проверки расчетов. Качественные векторные диаграммы строятся с учетом взаимных связей между величинами и обычно предшествуют расчету или заменяют его. В качественных диаграммах масштаб изображения и конкретные значения величин несущественны, важно только, чтобы в них были правильно отражены все связи между величинами, соответствующие связям и параметрам элементов электрической цепи. Качественные диаграммы являются важнейшим инструментом анализа цепей переменного тока.
В цепях переменного тока одной из самых распространенных задач является анализ поведения цепи при изменении в широких пределах какой-либо величины или параметра.
Пусть, например, требуется исследовать изменение тока в цепи, представленной на рис. 1 а), при постоянном напряжении на входе и изменении резистивного сопротивления в пределах 0 > R >? .
Падение напряжения на входе уравновешивается суммой падений напряжения на R и L, т.е. u = uR+uL = Ri + Ldi/dt или для изображений
U = UR + UL = RI + j LI = RI + jXLI. 1)
Из выражения (1) следует, что
· векторы UR и UL всегда перпендикулярны друг другу, т.к. каждый из них представляет собой вектор тока I, умноженный на соответствующую константу (R или XL), а в падении напряжения UL присутствует в качестве множителя оператор поворота на 90? - j;
· сумма векторов UR и UL постоянная и равна вектору U .
Для упрощения построений, не ограничивая в то же время общности рассуждений, совместим вектор U с вещественной осью (рис. 1 б)). Тогда в соответствии с условиями (1) при любых значениях R векторы UR и UL будут составлять с вектором U прямоугольные треугольники. Как известно, любой треугольник может быть вписан в окружность, причем дуги, на которые опираются углы вписанного треугольника равны двойному значению угла. Так как во всех векторных треугольниках угол между UR и UL равен 90? , то все они опираются на дугу в 180? , т.е. на диаметр, которым является постоянный вектор входного напряжения U. Следовательно, все треугольники векторов UR , UL и U вписываются в одну и ту же полуокружность, которая является геометрическим местом точек перемещения конца вектора UR при всех изменениях значения R.
Векторная диаграмма, в которой при вариации параметров геометрическим местом точек перемещения конца какого-либо вектора является окружность или полуокружность, называется круговой диаграммой.
Резонанс токов -- резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
Пусть имеется колебательный контур с частотой собственных колебаний a, и пусть он подключен к генератору переменного тока такой же частоты f.
В момент подключения конденсатор заряжается от источника. После чего он начинает разряжаться на катушку, причем разряжается с такой же скоростью, с какой убывает напряжение на генераторе. Через некоторое время энергия конденсатора полностью переходит в энергию магнитного поля катушки. Напряжение на клеммах генератора в этот момент равно нулю.
Далее магнитное поле катушки начинает убывать, так как не может существовать стационарно -- на выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе, причем с той же скоростью, с какой катушка заряжает конденсатор. Но ток от генератора не может течь через колебательный контур -- как только на клеммах генератора появляется напряжение, точно такое же напряжение появляется на выводах конденсатора вследствие перезаряда его катушкой. Напряжения конденсатора и генератора друг друга компенсируют.
Далее энергия магнитного поля катушки полностью переходит в энергию электрического поля конденсатора. Напряжение генератора в этот момент достигает максимума. Далее конденсатор разряжается на катушку, цикл повторяется в обратном направлении. В результате, в колебательном контуре циркулируют весьма большие токи, но за его пределы не выходят -- выходить им мешает точно такое же, только противоположно направленное напряжение на генераторе. Большой ток от генератора течет через контур только короткое время после включения, когда заряжается конденсатор. Далее генератор работает почти вхолостую -- как только на его клеммах появляется напряжение, точно такое же противоположно направленное напряжение появляется на конденсаторе и не пропускает ток от внешнего источника через контур.
Вышесказанное справедливо для контура с очень хорошей добротностью (низкими потерями энергии за цикл).
Ситуация изменится, если отбирать от контура во время его работы некоторую мощность. Тогда за цикл часть энергии контура будет теряться и конденсатор будет перезаряжаться контурной катушкой до меньшего напряжения, чем напряжение внешнего генератора. В этом случае генератор будет дозаряжать конденсатор, компенсируя таким образом потери за цикл. Через контур потечет переменный ток, который, однако, может быть меньше того, что циркулирует в самом контуре.
Электроизмерительные приборы -- класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений -- меры, преобразователи, комплексные установки.
Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.
В настоящее время в составе 6 объединенных энергосистем работает параллельно 74 районных систем.
Электроэнергетической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.
Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей энергии, распределительных устройств до и выше 1000 В, аккумуляторной батареи устройств управления и вспомогательных сооружений.
Распределительным устройством называется электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.
Линией электропередачи (ЛЭП) любого напряжения (воздушной или кабельной) называется электроустановка, предназначенная для передачи электрической энергии на одном и том же напряжении без трансформации.
По ряду признаков электрические сети подразделяются на большое количество разновидностей, для которых применяются различные методы расчета, монтажа и эксплуатации.
Электрические сети делятся:
http://electricalschool.info/main/elsnabg/1. По напряжению:
а) до 1 кВ;
б) выше 1 кВ.
2. По уровню номинального напряжения:
а) сети низкого (напряжения (до 1 кВ);
б) сети среднего напряжения (выше 1 кВ и до 35 кВ включительно);
в) сети высокого напряжения (110 ... 220 кВ);
г) сети сверхвысокого напряжения (330 ... 750 кВ);
д) сети ультравысокого напряжения (выше 1000 кВ)
3. По степени подвижности:
а) передвижные (допускают многократное изменение трассы, свертывание и развертывание) - сети до 1 кВ;
б) стационарные сети (имеют неизменяемую трассу и конструкцию):
· временные - для питания объектов, работающих непродолжительно (несколько лет);
· постоянные - большинство электрических сетей, работающих в течение десятилетий.
4. По назначению:
http://electricalschool.info/main/elsnabg/а) сети до 1 кВ: осветительные; силовые; смешанные; специальные (сети управления и сигнализации).
б) сети выше 1 кВ: местные, обслуживающие небольшие районы, радиусом действия 15... 30 км, напряжением до 35 кВ включительно; районные, охватывающие большие районы и связывающие электростанции электрической системы между собой и с центрами нагрузок, напряжением 110 кВ и выше.
5. По роду тока и числу проводов:
а) линии постоянного тока: однопроводные, двухпроводные, трехпроводные (+, -, 0);
б) линии переменного тока: однофазные (одно- и двухпроводные), трехфазные (трех- и четырехпроводные), неполнофазные (две фазы и нуль).
6. По режиму работы нейтрали: с эффективно заземленной нейтралью (сети выше 1 кВ), с глухозаземленной нейтралью (сети до и выше 1 кВ), с изолированной нейтралью (сети до и выше 1 кВ).
7. По схеме электрических соединений:
а) разомкнутые (нерезервированные):
Рис.1. Схемы разомкнутых сетей: а) радиальные (нагрузка только на конце линии); б) магистральные (нагрузка присоединена к линии в разных местах). б) замкнутые (резервированные).
б) замкунутые:
Рис.2. Схемы замкнутых сетей: а) сеть с двухсторонним питанием; б) кольцевая сеть; в) двойная магистральная линия; г) сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям).
8. По конструкции: электропроводки (силовые и осветительные ), токопроводы - для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии - для передачи электроэнергии на большие расстояния, кабельные линии - для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.
К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.
Надежность - основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.
Необходимое количество электроэнергии определяется мощностью и режимом работы электроприемников. Качество электроэнергии зависит от параметров сети и определяется ГОСТ 13109-97, в которых приведены допустимые отклонения напряжения на зажимах электроприемников: электродвигатели -5% ... +10%; лампы рабочего освещения промышленных предприятий и общественных зданий, прожекторы наружногоюсвещения -2,5%...+5%; лампы освещения жилых зданий, аварийного и наружного освещения, прочие электроприемники ±5%.
Надежность обеспечивается:
1. применением схемы сети, учитывающей ответственность электроприемников;
2. выбором соответствующих марок проводов и кабелей;
3. тщательным расчетом сечений проводов и кабелей по нагреву, допустимой потере напряжения и механической прочности и расчетом устройств регулирования напряжения;
4. соблюдением технологии электромонтажных работ;
5. своевременным и качественным выполнением правил технической эксплуатации.
Электробезопасность
Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от опасного и вредного воздействия электрического тока, электрической дуги, электромагнитного поля электростатических разрядов.
Организационные мероприятия по Электробезопасность - правильная организация и внедрение безопасных методов работ; обучение и инструктаж электротехнического персонала; контроль надзор за выполнением правил техники безопасности, приемов работы; механизация автоматизация технологических процессов.
Технические мероприятия по Электробезопасность - обеспечение нормальных метеорологических условий в рабочей зоне, нормированной освещенности, применение необходимых защитных мер и средств; применение безопасных ручных электрических машин(электроинструмента), а также ограждений, блокировок коммутационны электроаппаратов, контрольно-измерительных приборов, спецодежды, спецобуви и др*.
Травма, вызванная воздействием на организм электрического тока или электрической дуги, называется электротравмой.
Электротравмы возможны в результате непосредственного контакта человека с токоведущими частями электроустановки, а также в случаях прикосновения к металлическим конструктивным нетоковедущим частям электрооборудования, изоляция которого нарушена и имеет место замыкание токоведущих частей на корпус.
Прикосновение человека к токоведущим частям электроустановки может быть двухфазным (двухполюсным) и однофазным(однополюсным).
Электрическим замыканием на землю называется случайное электрическое соединение токоведущей части электроустановки непосредственно с землей, нетоковедущими проводящими конструкциями или предметами, не изолированными от земли.
Зона растекания тока замыкания на землю - зона, за пределами которой электрический потенциал, обусловленный токами замыкания, может быть условно принят равным нулю.
Напряжением относительно земли при замыкании на корпус называется разность потенциалов между этим корпусом и зоной нулевого потенциала.
В отношении воздействия на человека различают значения тока:
пороговый ощутимый ток - наименьшее значение ощутимого тока;
пороговый неотпускающий ток - наименьшее значение неотпускающего тока;
пороговый фибрилляционный ток - наименьшее значение фибрилляционного тока.
Напряжение прикосновения - напряжение между двумя точками цепи тока, которых одновременно касается человек.
Напряжение шага - напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых стоит человек (на земле, на полу и т. д.).
Заземление - преднамеренное электрическое соединение с заземляющим устройством частей электроустановки, нормально не находящихся под напряжением.
Малое напряжение - номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.
Воздействие электрического тока на организм человека
Электрический ток, проходя через тело человека, производит тепловое, химическое и биологическое воздействие, тем самым нарушая нормальную жизнедеятельность.
Химическое действие тока ведет электролизу крови и других содержащихся в организме растворов, что приводит к изменению их химического состава и, следовательно, к нарушению их функций.
Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток организма, в частности, нервных клеток и всей нервной системы. Такое возбуждение может сопровождаться судорогами, явлениями паралича. В ряде случаев возможен паралич дыхательного аппарата(паралич мышц грудной клетки) и паралич сердца (мышц желудочков сердца),являющийся причиной смертельного исхода. Прекращение работы сердца под действием электрического тока может быть в результате непосредственного действия тока на сердечную мышцу, когда ток проходит через область сердца, или рефлекторным -вследствие нарушения функции центральной нервной системы.
Степень поражения человека и тяжесть электрического удара зависят главным образом от значения тока, проходящего через тело человека, пути тока в теле человека и длительности его прохождения.
Зависимость допустимых для человека значений токов от продолжительности воздействия приведена на рисунке.
Допустимые для человека значения тока в зависимости от продолжительности воздействия.
1 - переменный ток 50 Гц;
2 - постоянный ток.
Классификация электроустановок
Электроустановки в отношении мер безопасности разделяются на:
электроустановки напряжением выше 1000 В с глухо заземленной нейтралью (с большими токами замыкания на землю);
электроустановки напряжением выше1000 В с изолированной нейтралью (с малыми токами замыкания на землю);
электроустановки напряжением до 1000 В с глухо заземленной нейтралью;
электроустановки напряжением до 1000 В с изолированной нейтралью.
Электромашинными помещениями (ЭМП) называются помещения, в которых совместно могут быть установлены электрические генераторы, вращающиеся или статические преобразователи, электродвигатели, трансформаторы, распределительные устройства, щиты и пульты управления, а также относящееся к ним вспомогательное оборудование, обслуживание которых производится специальным электротехническим персоналом. Общиетребования к ЭМП изложены в Правилах устройства электроустановок.
В отношении опасности поражения людей электрическим током все помещения (в том числе и электропомещения)разделяются на следующие виды:
а) помещения с повышенной опасностью, характеризующиеся наличием в них одного из следующих условий, создающих повышенную опасность: сырости или проводящей пыли, токопроводящих полов (металлических, земляных ,железобетонных, кирпичных и т. п.), высокой температуры, возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п. содной стороны, и к металлическим корпусам электрооборудования - с другой;
б) особоопасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность: особой сырости; химически активной среды; одновременного наличия двух или более условий повышенной опасности (п. «а»);
в) помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную опасность и особую опасность (п. «а» и «б»).
В зависимости от назначения устройства и характера окружающей среды следует применять напряжения согласно таблицы:
Напряжение, В |
Область применения |
|
12 |
Для ручных светильников я электрифицированного ручного инструмента - в помещениях, особо опасных |
|
36 и 42 |
Для тех же целей - в помещениях с повышенной опасностью, а также для стационарных светильников, подвешенных ниже 2,5 м над полом - в помещениях особо опасных и с повышенной опасностью. |
|
65 |
Для сварочных работ. |
|
220 |
Для стационарных осветительных установок. |
|
220, 380, 660 |
Для электропривода и других технических целей. |
В производственных помещениях допускается применение напряжения до 1000 В при условии, что электрооборудование имеет защищенное исполнение. Применение напряжения выше1000 В допускается, если оборудование имеет закрытое исполнение или специальные ограждения, для снятия которых необходим инструмент, или при снятии ограждений автоматически снимается напряжение с токоведущих частей.
Размещено на Allbest.ru
Подобные документы
Понятие электрической емкости системы из двух проводников. Конструкции конденсаторов: бумажных, слюдяных, керамических, электролитических, переменной емкости с воздушным или твердым диэлектриком. Параллельное и последовательное соединение конденсаторов.
презентация [728,9 K], добавлен 27.10.2015Рассмотрение устройства и назначения конденсаторов; их свойства в цепях переменного и постоянного тока. Условия достижения удельной емкости, максимальной плотности энергии и номинального напряжения. Классификация конденсаторов по виду диэлектрика.
презентация [2,4 M], добавлен 08.09.2013Конденсаторы для электроустановок переменного тока промышленной частоты. Конденсаторы повышенной частоты. Конденсаторы для емкостной связи, отбора мощности и измерения напряжения. Выбор элементов защиты конденсаторов и конденсаторных установок.
реферат [179,4 K], добавлен 16.09.2008Общие характеристики перезаряжаемых источников электрического тока. Конденсаторы с двойным электрическим слоем. Конструкция экспериментальных образцов ионисторов, технология их изготовления. Сравнительная характеристика экспериментальных образцов.
дипломная работа [1,7 M], добавлен 21.06.2012Система из двух и более электродов, разделенных диэлектриком. Сохранение электрического заряда. Обозначение конденсаторов на схемах. Номинальное напряжение и полярность. Паразитные параметры, электрическое сопротивление изоляции и удельная емкость.
презентация [1,2 M], добавлен 17.06.2012Задачи на применение первого закона Кирхгофа. Параллельное соединение элементов. Второй закон Кирхгофа, его применение. Последовательное соединение конденсаторов, их эквивалентная емкость. Обратная емкость конденсаторов, соединенных последовательно.
реферат [85,5 K], добавлен 15.01.2012Структура потерь электроэнергии в городских распределительных сетях, мероприятия по их снижению. Компенсация реактивной мощности путем установки батарей статических конденсаторов. Методика определения мощности и места установки конденсаторных батарей.
диссертация [1,6 M], добавлен 02.06.2014Экспериментальное исследование частотных и резонансных характеристик последовательного контура. Анализ влияния активного сопротивления на вид резонансных кривых. Особенности и методика настройки последовательного контура на резонанс с помощью емкости.
лабораторная работа [341,2 K], добавлен 17.05.2010Изучение сведений об электрической цепи, токе и законах электричества. Характеристика взаимодействия зарядов, источников тока, процесса электролиза. Анализ изобретения первых электрических конденсаторов и их использования, соединения проводников в цепи.
реферат [26,6 K], добавлен 15.09.2011Расчёт принципиальной тепловой схемы и выбор основного и вспомогательного оборудования станции, оценка ее технико-экономических показателей. Мероприятия по безопасной эксплуатации подстанций. Анализ эффективности использования батареи конденсаторов.
дипломная работа [2,9 M], добавлен 06.12.2013