Электрические машины
Рассмотрение порядка преобразования мощности в генераторах постоянного тока. Основные соотношения, характеризующие работу машины. Изучение режимов действия асинхронных двигателей. Магнитный усилитель без обратной связи и трансформаторы постоянного тока.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.02.2014 |
Размер файла | 670,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Уравнение напряжений, моментов и мощностей для ГПТ
генератор ток двигатель трансформатор
Уравнения генераторов постоянного тока
Основные соотношения, характеризующие работу машины в качестве генератора, можно представить в виде приведенных ниже уравнений. Эти уравнения справедливы для всех генераторов независимо от способа их возбуждения.
Уравнение равновесия напряжения. Напряжение на выводах генератора U всегда меньше наводимой в обмотке якоря ЭДС Е на значение падения напряжения, т. е.
U = E - IaУra - ДUщ. (1)
Падение напряжения в цепи якоря состоит из двух составляющих: IaУra - падение напряжения в обмотках и ДUщ. - падение напряжения в щеточном контакте. Сопротивление Уra включает в себя сопротивления обмотки якоря и всех последовательно соединенных с ней обмоток. В общем случае
Уra = ra + rд.+ rс + rк, (2)
где ra, rд, rс, rк - сопротивления обмоток: якоря, дополнительных полюсов, последовательной и компенсационной.
В зависимости от конкретной схемы генератора часть сопротивлений в (2) будет отсутствовать.
Для приближенных расчетов уравнение (1) можно упростить:
U = E - Ia Ra, (3)
Ra=Уra+rщ
Переходное сопротивление щеточного контакта rщ приближенно принимается постоянным и равным
rщ = ДUщ/ Ia, ном.
Ток якоря генератора Ia обусловлен ЭДС E и всегда имеет с ней одинаковое направление:
Ia = (E - U)/Ra. (4)
Уравнение баланса мощностей. Это уравнение получим, если правую и левую части (1) умножим на ток Ia:
UIa = EIa. - I2aУra - ДUщIa.
Произведение E Ia=Pэм называется электромагнитной мощностью и представляет собой суммарную электрическую мощность, которая получается в результате преобразования механической мощности. Часть этой мощности расходуется в цепи якоря на электрические потери в обмотках (I2aУra= Pэ,а) и в переходном сопротивлении щеточного контакта (ДUщIa= Pэ,щ).
Остальная часть мощности, равная произведению UIa, является отдаваемой мощностью генератора. В генераторах независимого возбуждения эта мощность поступает во внешнюю сеть и представляет собой полезную мощность генератораP2:
P2 = UIa. (5)
В генераторах параллельного и смешанного возбуждения полезная мощность P2, отдаваемая в сеть, меньше на значение мощности, затрачиваемой на возбуждение:
P2 = UIa - Pв. (6)
К генератору от двигателя, приводящего во вращение его якорь,подводится механическая мощность P1. Большая часть этой мощности преобразуется в электромагнитную Pэм, а другая ее часть расходуется в генераторе на покрытие механических потерь Pмх(трение в подшипниках, вентиляцию), магнитных потерь в стали якоря Pм и добавочных потерь Pд:
P1 = Pэм + Pмх.+ Pм + Pд. (7)
Для генераторов независимого возбуждения мощность, затрачиваемая на возбуждение, поступает от постороннего источника, поэтому в левой части (7) следует принимать
P1 = Pэм + Pмх.+ Pм + Pд + Pв.
Отношение P2/P1=з представляет собой КПД генератора.
Рассмотренное преобразование мощности в генераторах постоянного тока для наглядности можно представить в виде энергетической диаграммы (рис. 2). Эта диаграмма построена для генератора параллельного возбуждения.
Уравнение равновесия моментов. Поделив правую и левую части уравнения (7) на угловую скорость якоря Щ=2рn/60, получим уравнение момента:
P1/Щ = Pэм/Щ + (Pмх.+ Pм + Pд)/Щ, (8)
М1 = М + (Pмх.+ Pм + Pд)/Щ.
М=cMIaФ
Электромагнитный момент М в генераторе направлен против вращения и равен. При увеличении тока Iaвозрастает электромагнитный момент и, следовательно, момент и мощность, поступаемая от приводного двигателя.
2. Режимы работы асинхронной машины
Режимы работы асинхронных двигателей. Холостой ход. Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток. Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.
При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора--вторичной обмотке). По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20--40 % номинального тока по сравнению с 3--10 % у трансформатора). Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры. Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2--0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая -- передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.
Нагрузочный режим. Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется
При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается. Но одновременно увеличивается частота n1- n персечения вращающимся полем проводников обмотки ротора, а следовательно, э. д. с. Е2, индуцированная в этой обмотке, ток в роторе I2 и образованный им электромагнитный вращающий момент М. Этот процесс будет продолжаться до тех пор, пока электромагнитный момент двигателя M не сравняется с нагрузочным моментом Мвн. При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки. При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться. Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2--4 %, а для двигателей малой мощности от 5 до 7,5 %.
При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора -- с частотой n1 -- n. Следовательно,
f2/f1 = (n1- n)/n1= s или f2 = f1s (83)
Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cos1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260). В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора Рэл1 и ротора Рэл2, магнитные Рм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические Рмх от трения в подшипниках и вращающихся частей о воздух. Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р'мх. Полезная механическая мощность на валу двигателя Pмхменьше мощности Р'мх на значение потерь мощности на трение Рмх.
При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.
Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cos2 (здесь 2 -- угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора). Поэтому
M = cмФтI2 cos2 (84)
Фт -- амплитуда магнитного потока, созданного обмоткой статора;
cм -- постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.
Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников. Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками -- направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором. Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 -- распределение тока в проводниках, а кривая f -- распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем. Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср. Легко заметить, что к проводникам, лежащим на дуге, равной 180° -- 2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге 2 -- тормозящие силы. Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол 2. Электромагнитный момент М зависит от скольжения s.
Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cos2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).
При s < 10-20% увеличение скольжения приводит к незначительному уменьшению cos 2, вследствие чего активная составляющая тока в обмотке ротора I2cos 2 и электромагнитный момент М возрастают.
При некотором критическом скольжении sкр двигатель развивает наибольший момент Мmax, который определяет его перегрузочную способность. При дальнейшем увеличении скольжения (большем sкр) происходит резкое уменьшение cos 2, поэтому активная составляющая тока I2cos 2и электромагнитный момент М уменьшаются.
Номинальный вращающий момент Мном двигатели средней и большой мощности развивают при скольжении Sном = 2-4%.
Согласно государственным стандартам на асинхронные двигатели отношение Mmax/Mном = 1,8-2,5. Критическое скольжение sкр для мощных двигателей составляет 5--10%, для двигателей средней и малой мощности -- от 10 до 20 %.
Асинхронный двигатель, как и любая электрическая машина, может работать в генераторном режиме, создавая тормозной момент. Этот режим используется для электрического торможения приводов.
Режим пуска. В начальный момент пуска ротор двигателя неподвижен: скольжение s=1, магнитное поле пересекает ротор с максимальной частотой, индуцируя в нем наибольшую э. д. с. Е2. Так как ток в роторе I2 определяется значением э. д. с. Е2, то в начальный момент пуска он будет наибольшим. Наибольшим будет и ток в статоре. Обычно пусковой ток двигателя в 5--7 раз больше номинального. Вращающий момент Мп при пуске называется пусковым. Он обычно меньше наибольшего момента, который может развить двигатель. Для двигателей различных типов и мощностей отношение Мп/Мном = 0,7 - 1,8.
3. Магнитный усилитель без обратной связи и трансформаторы постоянного тока
Магнитным усилителем называют электромагнитный аппарат, служащий для плавного регулирования переменного тока, поступающего к нагрузке, путем изменения индуктивного сопротивления XL катушки с ферромагнитным сердечником, включенной последовательно с нагрузкой. Принцип действия магнитного усилителя основан на изменении индуктивности катушки с ферромагнитным сердечником при подмагничивании ее постоянным током. С помощью такого аппарата можно регулировать большие токи посредством сравнительно слабых электрических сигналов. Магнитные усилители широко применяют на тепловозах для автоматического регулирования возбуждения главного генератора и на э. п. с. для регулирования напряжения источника служебного тока при зарядке аккумуляторных батарей, в стабилизаторах напряжения и для других целей.
Обратные связи в магнитных усилителях. Магнитные усилители обычно выполняют с обратными связями, которые обеспечивают увеличение стабильности работы усилителя и повышение его коэффициента усиления.
Обратной связью в усилителе называется воздействие выходного тока или напряжения на его вход. Она может быть внешней и внутренней. Для создания внешней обратной связи в усилителях предусматривают специальную обмотку (рис. 239), которая дополнительно подмагничивает или размагничивает сердечник. Она располагается на сердечнике так же, как и обмотки управления и смещения, и питается выпрямленным током, пропорциональным току нагрузки или напряжению на нагрузке. Обратная связь может быть положительной и отрицательной. Если при возрастании тока нагрузки или напряжения на нагрузке обмотка обратной связи усиливает действие входного сигнала, то обратная связь называется положительной. Ее используют для повышения коэффициента усиления. Если же при возрастании тока или напряжения на нагрузке обмотка обратной связи ослабляет действие входного сигнала, то связь называется отрицательной. Такую связь вводят в системы автоматического регулирования для повышения устойчивости их работы.
В магнитном усилителе с выходом на постоянном токе (см. рис. 239) имеются два реактора L1 и L2 с сердечниками 1, на каждом из которых намотаны рабочие обмотки 2, обмотки управления 3, смещения 4 и положительной обратной связи по току 5. Нагрузка Rн и обмотки положительной обратной связи по току включены через выпрямитель 6. Параллельно обмоткам 5 присоединен резистор 7, посредством которого можно регулировать ток Iос в этих обмотках. Обмотки 3, 4 и 5, расположенные на сердечниках двух реакторов L1 и L2, включены встречно, чтобы индуцируемые в них переменные э. д. с. взаимно уничтожались. Начала всех обмоток обозначены точками (при этом принимается, что все обмотки намотаны в одном направлении). Обмотки смещения 4 создают м. д. с, направленную против м. д. с. обмоток 3 и 5. Вместо двух обмоток обратной связи и смещения можно применить по одной, охватывающей стержни обоих реакторов, как это показано на рис. 238 для обмоток управления.
При наличии положительной обратной связи (когда ток Lос направлен так же, как и ток Iу) характеристика управления будет иметь большую крутизну (см. рис. 237,б). Следовательно, при этом увеличиваются коэффициенты усиления по току кi и по мощности кр.
При изменении направления тока Iос обратная связь становится отрицательной (обмотка обратной связи будет создавать м. д. с. направленную противоположно м. д. с. обмотки управления). Крутизна рабочего участка характеристики управления, а также коэффициенты усиления по току и мощности в этом случае уменьшаются.
Трансформаторы постоянного тока и напряжения. С помощью магнитных усилителей можно создать трансформаторы постоянного тока и напряжения. Трансформатор постоянного тока представляет собой однофазный магнитный усилитель, состоящий из двух реакторов L1 и L2 (рис. 242,а), у которых рабочие обмотки 1 соединены последовательно. Обмотки подмагничивания также соединяют последовательно и встречно или их роль выполняет кабель 2, пропущенный через окна сердечников обоих реакторов. При изменении постоянного тока I1, проходящего по цепи подмагничивающей обмотки или по кабелю 2, изменяется насыщение сердечников, а следовательно, и переменный ток I2 в цепи рабочих обмоток. При работе усилителя на прямолинейной части характеристики управления ток I2будет изменяться пропорционально току I1. С помощью выпрямителя 3 переменный ток I2 можно преобразовать в постоянный I'2, который также будет пропорционален току I1.
Трансформатор постоянного напряжения (рис. 242,б) выполняется так же, как и трансформатор постоянного тока, но его подмагничивающие обмотки 2 подключают через добавочный резистор к двум точкам, между которыми действует напряжение U1 постоянного тока. Рабочие обмотки 1 для повышения точности включают параллельно (в этом случае существенно снижаются
э. д. с. четных гармоник, индуцируемых в обмотках 2). При изменении напряжения U1 изменяется ток подмагничивания I1, а следовательно, и ток I2 в цепи рабочих обмоток. При работе усилителя на линейной части характеристики токи I2, I'2 и выпрямленное напряжение U2 будут пропорциональны напряжению U1.
Размещено на Allbest.ru
Подобные документы
Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".
методичка [658,2 K], добавлен 06.03.2015Рабочие характеристики электродвигателя. Расчет коллекторного двигателя постоянного тока малой мощности. Обмотка якоря, размеры зубцов, пазов и проводов. Магнитная система машины. Потери и коэффициент полезного действия. Индукция в станине, её значение.
курсовая работа [597,6 K], добавлен 25.01.2013Сущность и решение машинных цепей при переменных ЭДС и трансформаторах. Расчет характеристик трехфазного трансформатора. Трехфазные асинхронные двигатели. Машины постоянного тока, их характеристики и особенности. Расчет двигателя постоянного тока.
контрольная работа [590,3 K], добавлен 06.04.2009Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.
презентация [4,1 M], добавлен 03.12.2015Методика и порядок расчета магнитной цепи машины по данным постоянного тока, чертеж эскиза. Определение Н.С. возбуждения при номинальном режиме с учетом генераторного режима работы. Чертеж развернутой схемы обмотки якоря при использовании петлевой.
контрольная работа [66,2 K], добавлен 03.04.2009Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.
реферат [3,6 M], добавлен 17.12.2009Расчет двигателя постоянного тока: главные размеры машины; параметры обмотки якоря, коллектор и щеточный аппарат; геометрия зубцовой зоны. Магнитная система машины: расчет параллельной обмотки возбуждения; потери и коэффициент полезного действия.
курсовая работа [2,7 M], добавлен 06.09.2012Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.
учебное пособие [7,3 M], добавлен 23.12.2009Расчет машины постоянного тока. Размеры и конфигурация магнитной цепи двигателя. Тип и шаги обмотки якоря. Характеристика намагничивания машины, расчет магнитного потока. Размещение обмоток главных и добавочных полюсов. Тепловой и вентиляционный расчеты.
курсовая работа [790,3 K], добавлен 11.02.2015