Тепловые электростанции
Виды тепловых электростанций: теплоэлектроцентраль, теплофикационные турбины. Мощность теплофикационных агрегатов. Тепловая нагрузка на отопительных теплоэлектроцентралях. Влияние станций на окружающую среду. Проблема снижения выбросов окислов азота.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.01.2014 |
Размер файла | 22,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Электрическая энергия - важнейший, универсальный, самый эффективный технически и экономически вид энергии. Другое его преимущество - экологическая безопасность использования и передачи электроэнергии по линиям электропередач по сравнению с перевозкой топлив, перекачкой их по системам трубопроводов. Электричество способствует развитию природосберегающих технологий во всех отраслях производства. Однако выработка электроэнергии на многочисленных ТЭС, ГЭС, АЭС сопряжена со значительными отрицательными воздействиями на окружающую среду. Энергетические объекты вообще по степени влияния принадлежат к числу наиболее интенсивно воздействующих на биосферу промышленных объектов.
На современном этапе проблема взаимодействия энергетики и окружающей среды приобрела новые черты, распространяя влияние на огромные территории, большинство рек и озёр, громадные объёмы атмосферы и гидросферы Земли. Ещё более значительные масштабы энергопотребления в обозримом будущем предопределяют дальнейшее интенсивное увеличение разнообразных воздействий на все компоненты окружающей среды в глобальных масштабах.
С ростом единичных мощностей блоков, электрических станций и энергетических систем, удельных и суммарных уровней энергопотребления возникла задача ограничения загрязняющих выбросов в воздушный и водный бассейны, а также более полного использования их естественной рассеивающей
Тепловые электростанции
Теплоэлектроцентраль (ТЭЦ) - тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (в СССР -- ГРЭС) и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.
Исходный источник энергии на ТЭЦ -- органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на атомных ТЭЦ). Преимущественное распространение имеют паротурбинные ТЭЦ на органическом топливе, являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа -- для снабжениятеплом промышленных предприятий, и отопительного типа -- для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных -- на расстояние до 20--30 км (в виде тепла горячей воды).
Теплофикационные турбины
Основное оборудование паротурбинных ТЭЦ -- турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят паровая турбина и синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7--1,5 Мн/м2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7-- 1,5 Мн/м2 (для промышленных потребителей) и 0,05--0,25 Мн/м2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05--0,25 Мн/м2.
Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).
У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающейводе и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по "тепловому" графику, то есть с минимальным "вентиляционным" пропуском пара вконденсатор. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по "электрическому" графику, с необходимой, полной или почти полной электрической мощностью.
Мощность теплофикационных турбоагрегатов
Электрическую мощность теплофикационных турбоагрегатов (в отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежегопара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицировались также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт, так и самых крупных в мире ТТ на 250 Мвт.
Давление свежего пара на ТЭЦ принято в СССР равным ~ 13--14 Мн/м2 (преимущественно) и ~ 24--25 Мн/м2 (на наиболее крупных теплофикационных энергоблоках -- мощностью 250 Мвт). На ТЭЦ с давлением пара 13--14 Мн/м2, в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не даёт столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.
Тепловая нагрузка
Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40--50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5--0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10--20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам. При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.
Топливо
На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо -- мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители, для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200--250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями --градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.
На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.
ТЭЦ -- основное производственное звено в системе централизованного теплоснабжения.
Как видно из диаграммы №1, большая доля электроэнергии (63,2%) в мире вырабатывается на ТЭС. Поэтому вредные выбросы этого типа электростанций в атмосферу обеспечивают наибольшее количество антропогенных загрязнений в ней. Так, на их долю приходится примерно 25% всех вредных выбросов, поступающих в атмосферу от промышленных предприятий. Нужно отметить, что за 20 лет с 1970 по 1990 год в мире было сожжено 450 млрд. баррелей нефти, 90 млрд. т угля, 11 трлн. м3 газа.
Таблица №1. Годовые выбросы ТЭС на органическом топливе мощностью 1000 МВт
Выброс Топливо |
Газ |
Мазут |
Уголь |
|
SOx |
0,012 |
52,66 |
139 |
|
NOx |
12,08 |
21,70 |
20,88 |
|
CO |
Незначительно |
0,08 |
0,21 |
|
Твёрдые частицы |
0,46 |
0,73 |
4,49 |
|
Гидрокарбонаты |
Незначительно |
0,67 |
0,52 |
Кроме основных компонентов, образующихся в результате сжигания органического топлива (углекислого газа и воды), выбросы ТЭС содержат пылевые частицы различного состава, оксиды серы, оксиды азота, фтористые соединения, оксиды металлов, газообразные продукты неполного сгорания топлива. Их поступление в воздушную среду наносит большой ущерб, как всем основным компонентам биосферы, так и предприятиям, объектам городского хозяйства, транспорту и населению городов. Наличие пылевых частиц, оксидов серы обусловлено содержанием в топливе минеральных примесей, а наличие оксидов азота - частичным окислением азота воздуха в высокотемпературном пламени. До 50% вредных веществ приходится на диоксид серы, примерно 30% - на оксида азота, до 25% - на летучую золу. Данные по годовым выбросам ТЭС в атмосферу для разных топлив представлены в таблице №1. Приведённые данные относятся к установившимся режимам работы оборудования. Работа же ТЭС на нерасчётных (переходных) режимах связана не только с понижением экономичности котлоагрегатов, турбоагрегатов, электрогенераторов, но и с ухудшением эффективности всех устройств, снижающих негативные воздействия электростанций.
Влияния ТЭС на окружающую среду
Газообразные выбросы главным образом включают соединения углерода, серы, азота, а также аэрозоли и канцерогенные вещества.
Окислы углерода (CO и CO2) практически не взаимодействуют с другими веществами в атмосфере и время их существования практически не ограничено. Свойства CO и CO2, как и других газов, по отношению к солнечному излучению характеризуются избирательностью в небольших участках спектра. Так, для CO2 при нормальных условиях характерны три полосы селективного поглощения излучения в диапазонах длин волн: 2,4 - 3,0; 4,0 - 4,8; 12,5 - 16,5 мкм. С ростом температуры ширина полос увеличивается, а поглощательная способность уменьшается, т.к. уменьшается плотность газа.
Одним из наиболее токсичных газообразных выбросов энергоустановок является сернистый ангидрид - SO2 . Он составляет примерно 99% выбросов сернистых соединений (остальное количество приходится на SO3). Его удельная масса - 2,93 кг/м3, температура кипения - 195єC. Продолжительность пребывания SO2 в атмосфере сравнительно невелика. Он принимает участие в каталитических, фотохимических и других реакциях, в результате которых окисляется и выпадает в сульфаты. В присутствии значительных количеств аммиака NH3 и некоторых других веществ время жизни SO2 исчисляется несколькими часами. В сравнительно чистом воздухе оно достигает 15 - 20 суток. В присутствии кислорода SO2 окисляется до SO3 и вступает в реакцию с водой, образуя серную кислоту. Согласно некоторым исследованиям, конечные продукты реакций с участием SO2распределяются следующим образом: в виде осадков выпадает на поверхность литосферы 43% и на поверхность гидросферы 13%. Накопление серосодержащих соединений происходит в основном в мировом океане. Воздействие этих продуктов на людей, животных и растения, а также на различные вещества разнообразно и зависит от концентрации и от различных факторов окружающей среды.
В процессах горения азот образует с кислородом ряд соединений: N2O, NO, N2O3, NO2, N2O4 и N2O5, свойства которых существенно различаются. Закись азота N2O образуется при восстановлении высших окислов и не реагирует с атмосферным воздухом. Окись азота NO - бесцветный слаборастворимый газ. Как показано Я.Б. Зельдовичем, реакция образования окиси азота имеет термическую природу:
O2 + N2 = NO2 + N - 196 кДж/моль,
N + O2 = NO + O + 16 кДж/моль,
N2 + O2 = 2NO - 90 кДж/моль.
В присутствии воздуха NO окисляется до NO2. Двуокись азота NO2 состоит из молекул двух видов - NO2 и N2O4:
2NO2 = N2O4 + 57 кДж/моль.
В присутствии влаги NO2 легко вступает в реакцию, образуя азотную кислоту:
3NO2 + H2O = 2HNO3 + NO.
Азотистый ангидрид N2O3 разлагается при атмосферном давлении:
N2O3 = NO + NO2
и образуется в присутствии кислорода:
4NO + O2 = 2N2O3 + 88 кДж/моль.
Азотный ангидрид N2O3 - сильный окислитель. Взаимодействуя с водой, образует серную кислоту. Ввиду скоротечности реакций образования окислов азота и их взаимодействий друг с другом и компонентами атмосферы, а также из-за излучения учесть точное количество каждого из окислов невозможно. Поэтому суммарное количество NOx приводят к NO2. Но для оценок токсического воздействия необходимо учитывать, что соединения азота, выбрасываемые в атмосферу, имеют различную активность и продолжительность существования: NO2 - около 100 часов, N2O - 4,5 года.
Аэрозоли подразделяются на первичные - непосредственно выбрасываемые, и вторичные - образующиеся при превращениях в атмосфере. Время существования аэрозолей в атмосфере колеблется в широких пределах - от минут до месяцев, в зависимости от многих факторов. Крупные аэрозоли в атмосфере на высоте до 1 км существуют 2-3 суток, в тропосфере - 5-10 суток, в стратосфере - до нескольких месяцев. Подобно аэрозолям ведут себя и канцерогенные вещества, выбрасываемые или образующиеся в атмосфере. Однако точных данных о поведении этих веществ в воздухе практически нет.
Одним из факторов взаимодействия ТЭС с водной средой является потребление воды системами технического водоснабжения, в т.ч. безвозвратное потребление воды. Основная часть расхода воды в этих системах идёт на охлаждение конденсаторов паровых турбин. Остальные потребители технической воды (системы золо- и шлакоудаления, химводоочистки, охлаждения и промывки оборудования) потребляют около 7% общего расхода воды. В тоже время именно они являются основными источниками примесного загрязнения. Например, при промывке поверхностей нагрева котлоагрегатов серийных блоков ТЭС мощностью 300 МВт образуется до 10000 м3 разбавленных растворов соляной кислоты, едкого натра, аммиака, солей аммония.
Кроме того, сточные воды ТЭС содержат ванадий, никель, фтор, фенолы и нефтепродукты. На крупных электростанциях расход воды, загрязнённой нефтепродуктами (масла и мазут), доходит до 10-15 м3/ч при среднем содержании нефтепродуктов 1-30 мг/кг (после очистки). При сбросе их в водоёмы они оказывают пагубное влияние на качество воды, водные организмы.
Представляет опасность и так называемое тепловое загрязнение водоёмов, вызывающее многообразные нарушения их состояния. ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром, а отработанный пар охлаждается водой. Поэтому от электростанций в водоёмы непрерывно поступает поток воды с температурой на 8-12єC превышающей температуру воды в водоёме. Крупные ТЭС сбрасывают до 90 мі/с нагретой воды. По подсчётам немецких и швейцарских учёных, возможности рек Швейцарии и верхнего течения Рейна по нагреву сбросной теплотой электростанций уже исчерпаны. Нагрев воды в любом месте реки не должен превышать больше чем на 3єC максимальную температуру воды реки, которая принята равной 28єC. Из этих условий мощность электростанций ФРГ, сооружаемых на Рейне, Инне, Везере и Эльбе, ограничивается значением 35000 МВт. Тепловое загрязнение может привести к печальным последствиям. По прогнозам Н.М. Сваткова изменение характеристик окружающей среды (повышение температуры воздуха и изменение уровня мирового океана) в ближайшие 100-200 лет может вызвать качественную перестройку окружающей среды (стаивание ледников, подъём уровня мирового океана на 65 метров и затопление обширных участков суши).
Нужно сказать, что воздействия ТЭС на окружающую среду значительно отличаются по видам топлива (таблица 1). Одним из факторов воздействия ТЭС на угле являются выбросы систем складирования, транспортировки, пылеприготовления и золоудаления. При транспортировке и складировании возможно не только пылевое загрязнение, но и выделение продуктов окисления топлива.
Наиболее "чистое" топливо для тепловых электростанций - газ, как природный, так и получаемый при переработке нефти или в процессе метанового брожения органических веществ. Наиболее "грязное" топливо - горючие сланцы, торф, бурый уголь. При их сжигании образуется больше всего пылевых частиц и оксидов серы.
Для соединений серы существуют два подхода к решению проблемы минимизации выбросов в атмосферу при сжигании органических топлив:
1) очистка от соединений серы продуктов сгорания топлива (сероочистка дымовых газов);
2) удаление серы из топлива до его сжигания.
К настоящему времени по обоим направлениям достигнуты определённые результаты. В числе достоинств первого подхода следует назвать его безусловную эффективность - удаляется до 90-95% серы - возможность применения практически вне зависимости от вида топлива. К недостаткам следует отнести большие капиталовложения. Энергетические потери для ТЭС, связанные с сероочисткой, ориентировочно составляют 3-7%. Основным преимуществом второго пути является то, что очистка осуществляется независимо от режимов работы ТЭС, в то время как установки по сероочистке дымовых газов резко ухудшают экономические показатели электростанций за счёт того, что большую часть времени вынуждены работать в нерасчётном режиме. Установки же по сероочистке топлив можно всегда использовать в номинальном режиме, складируя очищенное топливо. тепловой электростанция выброс отопительный
Проблема снижения выбросов окислов азота ТЭС серьёзно рассматривается с конца 60-х годов. В настоящее время по этому вопросу уже накоплен определённый опыт. Можно назвать следующие методы:
1) уменьшение коэффициента избытка воздуха (так можно добиться снижения содержания окислов азота на 25-30%, уменьшив коэффициент избытка воздуха (б) с 1,15 - 1,20 до 1,03);
2) улавливание окислов с последующей переработкой в товарные продукты;
3) разрушение окислов до нетоксичных составляющих.
Для уменьшения концентрации вредных соединений в приземном слое воздуха котельные ТЭС оборудуют высокими, до 100-200 и более метров, дымовыми трубами. Но это приводит также к увеличению площади их рассеивания. В результате крупными промышленными центрами образуются загрязнённые области протяженностью в десятки, а при устойчивом ветре - в сотни километров.
Размещено на Allbest.ru
Подобные документы
Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.
презентация [11,2 M], добавлен 23.03.2015Электрическая станция. Тепловые установки. Тепловые конденсационные электростанции. Теплоэлектроцентраль и ее особенности. Преимущества тепловых станций по сравнению с другими типами станций. Особенности принципов работы, преимущества и недостатки.
реферат [250,8 K], добавлен 23.12.2008Характеристика электрических станций различного типа. Устройство конденсационных тепловых, теплофикационных, атомных, дизельных электростанций, гидро-, ветроэлектростанций, газотурбинных установок. Регулирование напряжения и возмещение резерва мощности.
курсовая работа [240,4 K], добавлен 10.10.2013История создания промышленных атомных электростанций. Принцип работы АЭС с двухконтурным водо-водяным энергетическим реактором. Характеристика крупнейших электростанций мира. Влияние АЭС на окружающую среду. Перспективы использование ядерной энергии.
реферат [299,9 K], добавлен 27.03.2015Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.
реферат [3,5 M], добавлен 25.10.2013Значение тепловых электростанций. Определение расходов пара ступеней турбины, располагаемых теплоперепадов и параметров работы турбины. Расчет регулируемой и нерегулируемой ступеней и их теплоперепадов, действительной электрической мощности турбины.
курсовая работа [515,7 K], добавлен 14.08.2012Теплоэлектроцентраль как разновидность тепловой электростанции: знакомство с принципом работы, особенности строительства. Рассмотрение проблем выбора типа турбины и определения необходимых нагрузок. Общая характеристика принципиальной тепловой схемы.
дипломная работа [1,7 M], добавлен 14.04.2014Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.
презентация [247,7 K], добавлен 23.03.2016Общая характеристика, работа и основные узлы теплоэлектростанции. Виды тепловых паротурбинных электростанций. Схема конденсационной электрической станции. Топливно-экономические показатели работы станций. Расчет себестоимости вырабатываемой энергии.
реферат [165,2 K], добавлен 01.02.2012Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.
курсовая работа [7,5 M], добавлен 24.06.2009